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Abstract

This thesis studies nonlinear stationary mean field games and provides a way
to find an approximate solution of a particular class of problems. In the gen-
eral case, it is very difficult to find a solution of a mean field game because
it requires to solve of a system of partial differential equations. The goal of
the work presented in this thesis is to show a procedure to find an approx-
imate local equilibrium for a class of nonlinear mean field games with the
cost function of a particular form. The proposed technique is characterized
by the fact that it permits to solve two algebraic inequalities instead of a
system of PDEs. It is local and formally proved in a neighborhood of the
origin. Moreover, we only focus on stationary solutions i.e. functions that
describe players behavior due the application of an optimal control after a
long time. Finally, a numerical example is introduced and the effectiveness
of the proposed technique is shown.
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Notation and Symbols

Note that in all this text the gradient of a function will be considered a row
vector. More specifically, let v(x, t) : Rn × [0,∞[ 7−→ R be a smooth func-
tion where x =

(
x1 . . . xn

)T
. Its gradient and consequently its Hessian

matrix are always indicated as follows
∂v
∂x

= vx(x, t) =
(
∂v
∂x1
, ∂v
∂x2
· · · ∂v

∂xn

)
∈ Rn

∂2v
∂x2 = vxx(x, t) =



∂2v
∂x2

1

∂2v
∂x1x2

· · · ∂2v
∂x1xn

∂2v
∂x2x1

∂2v
∂x2

2
· · · ∂2v

∂x2xn
... ... . . .
∂2v
∂xnx1

∂2v
∂xnx2

∂2v
∂x2
n

 ∈ Rn×n

This choice is stressed because in literature the gradient is often defined as
a column vector. This decision was taken in order to be consistent with the
notation used in [15] and [16] on which this work is mainly based.

For the time derivative the classical notation is used, namely
dv
dt

= v̇(x, t) ∈ R
∂v
∂t

= vt(x, t) ∈ R

Let w(x) : Rn 7−→ R1×n and W (x) : Rn 7−→ Rn×n be two smooth functions.
The trace and divergence operators in this text are defined as

tr (W (x)) = tr


W1,1(x) · · · W1,n(x)

... . . . ...
Wn,1(x) · · · Wn,n(x)

 = ∑n
i=1Wi,i(x)

div (w(x)) = div
(
w1(x) . . . wn(x)

)
= ∑n

i=1
∂wi(x)
∂xi
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2 CONTENTS

We finally define a new operator called ∇̄x(·) that will be used to compute
the vectorial derivative of matrix mappings

∇̄x (W (x)) =


∂W1,1(x)
∂x1...

∂W3,1(x)
∂x1

+


∂W1,2(x)
∂x2...

∂W3,2(x)
∂x2

+ · · · +


∂W1,n(x)
∂xn...

∂W3,n(x)
∂xn





Chapter 1

Introduction

This thesis studies nonlinear stationary mean field games and provides a way
to find an approximate solution of a particular class of problems. Mean field
games are a very recent topic. They are attracting more and more attention,
due to the fact that they provide tools to model a lot of important physical,
biological and economical phenomena. For example this theory is used to
describe particles interactions in relativistic physics as in [49] or in [53] but
it is also used to analyzed person-to-person interactions both in a financial
framework as in [46] and in a social one as in [5]. In particular, the studies
[51] and [52] show that mean field games theory can be very effectively used
to model crown dynamics that, especially in last years, is an increasingly
important topic.
However, in the general case, it is very difficult to find a solution of a mean
field game because it requires to solve of a system of partial differential
equations (PDEs). In the literature exact solutions for very specific classes
of problems, such as the class of the linear quadratic problems in [4] and
[6], are available. Because of this difficulty not only in computing the mean
field games solution but also in defining existence and uniqueness conditions
for the latter, some authors are focusing on finding procedures to design
approximate solutions. However very few works on the latter topic exist.
One of them is [51] where a suboptimal result is discussed in a particular
practical application. Some approximated solutions for some of the PDEs
involved in the solution of a mean field game are also provided in [36] and
[30]. Nevertheless there is a need to develop more general methods to find
the solution of a larger class of mean field games.

3



4 CHAPTER 1. INTRODUCTION

The goal of the work presented in this thesis is to show a procedure to
find an approximate local equilibrium for a class of nonlinear mean field
games with the cost function of a particular form. The proposed technique
is characterized by the fact that it permits to solve two algebraic inequalities
instead of system of PDEs. It is local and formally proved in a neighborhood
of the origin. Moreover we only focus on stationary solutions i.e. functions
that describe players behavior due the application of an optimal control after
a long time. However the proposed technique is strongly innovative because
no approximate methods for this class of nonlinear mean field game problems
are available in literature. The proposed approach is the same used in [15]
and [16] but several new concepts are introduced in order to deal with the
intrinsically different structure of the equations involved. The theoretical
concepts are furthermore implemented in a numerical example in order to
illustrate the developed procedure.
In this thesis mean field games are studied as an extension of problems of opti-
mal control and differential games. On one hand, in Chapter 2, the optimal
control problem is introduced in order to show how a solution can be found by
simply solving a PDE. On the other hand, in Chapter 3, differential games
are briefly described in order to explain what is intended by optimal con-
trol in a framework where more than one player is considered. Consequently
the concept of Nash equilibrium is defined. In Chapter 4, exploiting the
previously seen concepts, mean field games are introduced together with the
concept of stationary solution. In particular, the two equations, namely the
Hamilton-Jacobi-Bellman (HJB) and the Fokker-Planck-Kolmogorov (FPK)
equation, which characterize the solution of the mean field game are ana-
lyzed. The new concept of algebraic (P (·), G(·)) mean field game solution is
then defined. It is also formally proved that, using the latter, it is possible to
define a solution of an algebraic inequality system that approximates the HJB
FPK PDE system. In other words, it permits to find a suboptimal control
in a neighborhood of the origin. Finally, a numerical example is introduced
and the effectiveness of the proposed technique is shown.



Chapter 2

Infinite Horizon Optimal
control

2.1 Introduction

Optimal control theory is a mathematical discipline that deals with the prob-
lem of finding how to act on a given system so that a certain optimality
criterion is achieved. The first works in this area were published about 50
years ago immediately after the World War II. Indeed, with the beginning of
the Cold War, the efforts in making use of mathematical theories in defense
analyses were increased. Mathematicians in the East and the West almost
simultaneously began to develop solution methods for problems which later
became known as optimal control problems. An example is the minimum
time interception problem for fighter aircraft A detailed description of the
origin of this framework is available in [9].
In recent years optimal control theory has had countless applications espe-
cially in engineering, physics, mathematics and economy. It studies control-
lable systems whose dynamics can be modified introducing a controller. The
latter may be a human being, an electronic device or anything else and it
affects the system by modifying specific quantities called control variables.
A system is characterized by some variables, called states, whose behavior
fully describes the system dynamics. Moreover an optimal control problem
includes a cost functional that is a function of the states and of the control
variables. Generally it must be minimized if it is a cost or maximized if it is
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6 CHAPTER 2. INFINITE HORIZON OPTIMAL CONTROL

a profit. We will see that an optimal control problem can be modeled by a
set of differential equations describing the trajectories of the control variables
that minimize the cost function.
In this chapter, starting from the mathematical description of a general op-
timal control problem, the procedure to construct the optimal control law
is studied. Furthermore the most important definitions and properties are
formally introduced and discussed in detail. Indeed similar theorems and
mathematical tools will also be used to deal with differential games and
mean-field games. This chapter is focused on the infinite horizon optimal
control problem i.e. a problem where states, control laws and cost function
are defined in the time interval [0,∞[. This choice is due firstly to the fact
that finding a solution of this kind of problem is typically easier because
of the absence of a constraint on the terminal state value. Secondly, most
of the published papers concerning mean field games, which are the main
topic of this work, deal with infinite horizon problems. Besides the solutions
of the latter are often used in practice in order to approximate results of
problems defined on [0, T ] with T very large. For this reason the infinite
horizon optimal problem is introduced and the techniques for its resolution
are formally explained. Then, in the last section of this chapter, an overview
of approximate solutions for the optimal control problem is given. The aim
is to explain what is meant by an approximate solution and why it is useful
in practice. Moreover, some of the described approaches will be used and
deeply analyzed in the context of differential games and mean-field games.
In other words the next pages are intended for the reader to get acquainted
with the subject and in particular with the techniques that will be used in
the following. Moreover they describe the infinite horizon optimal control as
a stand-alone argument, while it is often shown as a particular case of the
finite horizon optimal control in papers and books.

2.2 Definitions and properties

A general dynamic system can be mathematically described as a Cauchy
problem in the state variable x ∈ Rn namely as

ẋ = f(x, t) x(t0) = x0 (2.1)

where t ∈ R+ is the independent variable, typically the time variable, n is
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the state space dimension, x0 ∈ Rn is the initial condition at time t0 ≥ 0,
f : Rn× [0,+∞[ 7−→ R is a smooth function which describes the behavior of
the system. Assuming for simplicity t0 = 0, we define a solution of (2.1) in
R+ as a C0 curve Φt(x0)

x(t) = Φt(x0) : [0,∞[ 7−→ Rn (2.2)

such that x(t) satisfies (2.1) for all t ∈ R+. The existence and uniqueness
of a solution depend the properties of f(x, t). Some necessary conditions are
provided by the following theorems.

Theorem 2.1. [10](Global existence and uniqueness)
Let f(t, x) be
1. piece-wise continuous w.r.t. t ∈ R+;
2. globally Lipschitz in Rn;
3. uniformly bounded, in other words there exists h ∈ R+ such that
‖ f(t, x) ‖≤ h for all t ∈ R+ and x ⊆ Rn.
Then (2.1) admits a unique solution w.r.t. t ∈ R+.

Globally Lipschitz conditions are typically hard to satisfy. However, local
conditions are enough if the solutions exist in a compact set.

Theorem 2.2. [10](Existence and uniqueness in compact sets)
Let f(t, x) be
1. piece-wise continuous w.r.t t ∈ R+;
2. locally Lipschitz in a set S ⊂ Rn.
If we know that every solution of (2.1) does not exit X ⊆ S and X is compact,
then there is a unique solution w.r.t t ∈ R+.

The proofs of Theorems 2.1 and 2.2 are provided in [10]. However, for further
information about other types of autonomous dynamical system and stability,
see [8].
The aim of control theory is to model and study the presence of an external
agent operating on the system typically to reach a specific goal such as to



8 CHAPTER 2. INFINITE HORIZON OPTIMAL CONTROL

steer the system to a specific location, to stabilize a certain configuration or,
as in this case, to maximize a profit or minimize a cost. The agent modifies
the dynamics of the system by means of the so called control function u(t) :
R+ 7−→ Rm. The controlled dynamic system is mathematically described by
a Cauchy problem with the additional presence of the input u(t) ∈ U where
U is the set of all possible input functions

ẋ = f(x, u, t) x(t0) = x0 (2.3)

and hence a solution of (2.3) corresponding to the initial condition x0 at
t0 = 0 and defined for t ∈ R+ is

x(t) = Φt(x0, u) (2.4)

In this case, as explained in [11] and [12], a necessary condition for the
existence and uniqueness of (2.4) is

(H1)



u(t) is a Lebesgue-measurable function

U is a compact set

the following holds
∃K ∈ R : |f(x, u, t)| < K(1 + |x|) for all (x, u, t) ∈ Rn × U × R+

Assumptions (H1) furthermore ensure that x(t) is bounded.

In order to determine what is the best control u∗(t), we need to specify a
particular cost criterion. Let us define the cost functional

J (u(t), x0) := lim
T−→∞

ˆ T

0
L (x(t), u(t), t) dt (2.5)

where x(t) solves (2.3) for the control u(t). Here L (x, u, t) : Rn × U ×
R+ 7−→ R is given and called running cost. The aim is to find a function
u(t) : R+ 7−→ Rm that permits to minimize J (u(t), x0) where x(0) = x0 is
fixed.
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Moreover, it is necessary to ensure the absolute convergence of the integral
in (2.5). A necessary condition, which will be referred to as (H2) and has
to hold for any u(t) ∈ U , is the following

(H2)



Given a control u(t) such that (H1) holds and that x(t) is
the corresponding solution according to 2.4 and
two positive-valued functions µ1 and µ2 on [0,∞[ such that
µ1(t)→ 0 , µ2(t)→ 0 as t→∞, we have

maxu∈U |L (x(t), u(t), t) | ≤ µ1(t) for all t > 0

´∞
T
|L (x(t), u(t), t) |dt ≤ µ2(t) for all T > 0

The verification of (H2) for all possible controls u(t) ∈ U may be very
laborious or impossible . For this reason, in the scientific literature cost
functions of other forms are very often used. The most common formulations
are

Jdisc,1 (u(t), x0) := lim
T−→∞

ˆ T

0
e−αtg (x(t), u(t)) dt (2.6)

Jdisc,2 (u(t), x0) := lim
T−→∞

1
T

ˆ T

0
g (x(t), u(t)) dt (2.7)

where g (x, u) : Rn × Rm 7−→ R and α ∈ R is a positive constant. (2.6)
is referred to as discounted cost and (2.7) is referred to as average cost and
they can model particular economic or physic phenomena. Using (2.6) and
(2.7), assumption (H2) can be easily verified. Indeed, for instance, having
g (x, u) : Rn×U 7−→ R bounded is sufficient to prove the absolute convergence
of the cost function. The two proposed formulations can however be seen as
particular cases of (2.5). This is the reason why only the general case (2.5)
will be analyzed in the following. Particular results concerning systems for
which these kinds of cost functions are used are provided in [17] and [20].
Finally, a generic infinite horizon optimal control problem is formulated asminu(t)∈U limT−→∞

´ T
0 L (x(t), u(t), t) dt

ẋ = f(x, u, t, ) x(t0) = x0
(2.8)
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Note that the optimization has to be performed in the infinite dimensional
space U . So, it is very difficult to find a minimum by directly solving (2.8).
For this reason two important tools, i.e. the Pontryagin Minimum Principle
and the Hamilton Jacobi Bellman PDE, will be introduced in the next sec-
tion. These provide necessary and sufficient conditions for u(t) to be optimal.

2.3 The Pontryagin Minimum Principle

The most important and powerful tool to search for an explicit solution of an
optimal control problem is the well known Pontryagin Minimum Principle. It
was introduced by Pontryagin in 1962. The classical formulation is provided
in the original paper [13] or in [14] where the typical control theory notation
is used. In its original form the principle aimed at solving a maximization
problem. However here it is formulated for the previously defined minimiza-
tion problem (2.8). It can be thought of as the equivalent of the Lagrange
Multiplier Method for optimization in an infinite dimensional space. Indeed
(2.8) can be seen as a problem of constrained optimization. The functional
we have to minimize is (2.5) and the dynamic equation (2.1) plays the role
of the constraint.
First of all we need to give the definition of Hamiltonian function that is the
key concept the minimum principle is based on.

Definition 2.3. [14](Hamiltonian Function) Given the optimal control
problem (2.8), p0 ∈ R and p(t) : [0,∞[→ R1×n, define Hamiltonian function
H : Rn × Rm × [0,∞[×Rn × R→ R the following

H (x, u, t, p, p0) = p(t) f(x, u, t) + p0L (x, u, t)

Accordingly, the minimized Hamiltonian function can be defined as follows.

Definition 2.4. [14](Minimized Hamiltonian Function) Given the op-
timal control problem (2.8), p0 ∈ R and p(t) : [0,∞[→ Rn, the minimized
Hamiltonian function H : Rn × [0,∞[×Rn × R→ R is defined as follows

H (x, t, p, p0) = inf
u∈U
H (x, u, t, p, p0) (2.9)

In the literature and in this work the classical notation H (x, t, p), corre-
sponding to H (x, t, p) = H (x, t, p, 1), will be used. Moreover, with some
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misuse of terminology, H (x, t, p) will simply be referred to as the Hamilto-
nian function.

Theorem 2.5. [19](Pontryagin Minimum Principle) Call u∗(t) the
solution of the problem (2.8) and x∗(t) the corresponding trajectory.
If (H1) and (H2) hold for (u∗(t), x∗(t)) , then there exists a couple (p(t), p0),
called “couple of adjoint variables associated with (u∗(t), x∗(t))”, where p0 ∈
R and p : [0,∞[→ Rn is a continuous piecewise differentiable function such
that

1. ṗ(t) = −p(t)
[
∂f(x∗(t),u∗(t),t)

∂x

]
− p0

[
∂L(x∗(t),u∗(t),t)

∂x

]
2. H (x∗(t), t, p, p0) = H (x∗(t), u∗(t), t, p, p0) ∀t ≥ 0

3. ‖ p(0) ‖ +p0 > 0

A complete proof is provided for instance in [22], [19] and [21] where the
different formulation of the cost functional (2.6) is also considered. For the
sake of completeness, the Pontryagin Maximum Principle is stated below.

Theorem 2.6. [19](Pontryagin Maximum Principle)
Given the following problemmaxu(t)∈U limT−→∞

´ T
0 L (x(t), u(t), t) dt

ẋ = f(x, u, t, ) x(t0) = x0

Call u∗(t) its solution and x∗(t) the corresponding state trajectory.
If (H1) and (H2) hold for (u∗(t), x∗(t)) , then there exists a couple (p(t), p0),
called “couple of adjoint variables associated with (u∗(t), x∗(t))”, where p0 ∈
R and p(t) : [0,∞[→ Rn is a continuous piecewise differentiable function
such that

1. ṗ(t) = −p(t)
[
∂f(x∗(t),u∗(t),t)

∂x

]
− p0

[
∂L(x∗(t),u∗(t),t)

∂x

]
2. supu∈U H (x, u, t, p, p0) = H (x∗(t), u∗(t), t, p, p0) ∀t ≥ 0

3. ‖ p(0) ‖ +p0 > 0
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Consider now the following assumption that will be referred to as (H3)

(H3)



For each x ∈ Rn the function u→ f(x, u, t) is affine i.e.

f(x, u, t) = f0(x) + f1(x)u(t) for all x ∈ Rn and all u ∈ U

where fi : Rn → Rn, i = 0, 1 are continuously differentiable

According to [17], if (H3) holds, we can fix p0 = 1 in Theorem (2.5) and
obtain the following formulation.

Theorem 2.7. [17](Pontryagin Minimum Principle - Normal Form)
Call u∗(t) the optimal solution of the problem (2.8) and x∗(t) the correspond-
ing trajectory.
If (H1), (H2) and (H3) hold for (u∗(t), x∗(t)), then there exists
a continuous piecewise differentiable function p : [0,∞[ 7−→ Rn such that

1. ṗ(t) = −p(t)
[
∂f(x∗(t),u∗(t),t)

∂x

]
−
[
∂L(x∗(t),u∗(t),t)

∂x

]
2. H (x∗(t), t, p, 1) = H (x∗(t), u∗(t), t, p, 1) ∀t ≥ 0

A counter-example, that shows that we can not normalize the Hamiltonian
by assuming p0 = 1 unless (H3) hold, is proposed in [17].
Theorem 2.7 provides just some necessary conditions for u∗(t) to satisfy. This
means that it suggests a way to find all the optimal control candidates. In
detail, it consists of the following steps

1. Find one of the possible candidates uC(t, x, p) such that

uC(t, x, p) = arg min
u∈U
H (x, u, t, p, 1)

where we remark that uC(t, x, p) depends also on p and it may be
discontinuous.

2. Solve the problemẋ = f (x(t), uC(t), t) x(t0) = x0

ṗ(t) = −p(t)
[
∂f(x(t),uC(t),t)

∂x

]
−
[
∂L(x(t),uC(t),t)

∂x

] (2.10)
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that can be thought of as an extended system that has
z(t) = (x(t), p(t))T as its state, z(t) = (x0, 0)T as its initial condition
and
uC(t, x(t), p(t)) = uC(t, z(t)) as its input. If a solution (xC(t), pC(t))
of (2.10) exists, it satisfies all the conditions of the Pontryagin mini-
mum principle. For this reason u (t, xC(t), pC(t)) is a candidate optimal
control.

Theorem (2.7) produces necessary but not sufficient conditions for optimality.
This means that it permits to find a set S of possible optimum candidates
u (t, xC(t), pC(t)) that have to be tested one by one. Moreover this proce-
dure may be impossible to implement because S may have infinitely many
elements. Under more specific hypotheses on the cost function (2.5), the
PMP becomes a necessary and sufficient condition as it will be seen in the
following. We define the Assumption (H4) as follows

(H4)For each x ∈ Rn the function u→ L (x(t), u(t), t) is convex

Theorem 2.8. [22] If u∗(t) ∈ U is an input for the system (2.8) and x∗(t)
is the corresponding state trajectory according to (2.3) and if the following
conditions hold

1. (H1), (H2), (H3) and (H4) hold for (u∗(t), x∗(t))
2.u∗(t) is such that

H (x∗(t), t, p, 1) = H (x∗(t), u∗(t), t, p, 1) ∀t ≥ 0

3.the solution p(t) of

ṗ(t) = −p(t)
[
∂f (x∗(t), u∗(t), t)

∂x

]
−
[
∂L (x∗(t), u∗(t), t)

∂x

]

is such that
lim
t→∞
‖ p(t) ‖= 0

Then u∗(t) is the optimal control for the problem (2.8).

A proof is provided in [22]. Analyzing the definition of Hamiltonian func-
tion, the infinite horizon optimal control problem (2.8) can be rewritten as
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a boundary value problem as followsẋ = ∂H
∂p

(x, t, p, 1) x(t0) = x0

ṗ = −∂H
∂x

(x.t, p, 1) limt→∞ ‖ p(t) ‖= 0
(2.11)

In other words, if assumptions (H1), (H2), (H3) and (H4) hold, solving
(2.8) is equivalent to solving the system of PDEs (2.11) in the unknown
variables p(t) and x(t). In this case the optimal control exists, is unique and
is given by

u∗(t) = arg min
u∈U
H (x(t), u, t, p(t), 1)

Besides note that in this problem, differently from the finite horizon case, we
do not have a constraint on the final value of p(t) but we need to check the
so called transversality condition

lim
t→∞
‖ p(t) ‖= 0

To sum up, in the particular case of limt→∞ ‖ p(t) ‖> 0, we can not say if
the solution of (2.11) is optimal or not without further assumptions. This
condition can be eliminated or made easily verifiable using another kind of
cost functional such as (2.6), see, for example, [17].
As we have seen, this procedure is often difficult to apply because the hy-
potheses of the Pontryagin principle are difficult to verify. This is the reason
why it is not typically used in the infinite horizon problems.

2.4 Hamilton Jacobi Bellman PDE

Theorem 2.8 provides a sufficient condition for optimality if (H1), (H2),
(H3) and (H4) hold. Such assumptions, in particular (H3) and (H4),
are far too restrictive. Besides, in several applications, they are not satis-
fied. In this section we introduce the Hamilton Jacobi Bellman PDE, which
constitutes a sufficient condition for optimality, regardless of the structure
of the dynamics ẋ = f(x, u, t) and of the cost function J (u(t), x0). We
briefly described the optimal control problem (2.8) with fixed initial condi-
tion x(t0) = x0 so far. Now we introduce a value function specifying the best
possible value of the cost function starting from each state.
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Definition 2.9. [33](Value Function) If (H2) holds for each u(t) ∈ U ,
we define value function the function V : Rn × [0,∞[ 7−→ R

V (x, t) = inf
u(t)∈U

J (u(t), x, t)

where U is the set of all possible inputs, J (u(t), x0, t0) is the cost function
defined in (2.5) with x0 = x ∈ Rn and x(t) is the solution of the Chauchy
problem (2.3) for x(t0) = x and t0 = t ≥ 0.

Note that (H2) ensures that V (x0, t0) is finite. However, without any further
assumption, there may be more than one u(t) ∈ U such that J [u(t), x, t] =
V (x, t) with x and t fixed.
We now introduce the dynamic programming principle. It describes an im-
portant property of the value function, based on which the Hamilton Jacobi
Bellman PDE will be derived in the following.

Theorem 2.10. [33](Dynamic Programming Principle)
For each x0 ∈ Rn, t0 ≥ 0 and h ≥ 0, if (H1) holds and (H2) holds for each
u(t) ∈ U , the value function satisfies

V (x0, t0) = inf
u(t)∈U

[ˆ t+h

t

L (x(s), u(s), s) ds+ V (x(t0 + h), t+ h)
]

(2.12)

where x(s) = x(s; t0, x0, u(t)) and x(t0 + h) = x(t0 + h; t0, x0, u(t)).

The proof, which can be found in detail in [33], is given in the Appendix B. It
is important in order to understand how the previously defined Hamiltonian
function is linked to the optimal control function u(t).
The dynamic programming principle can be interpreted as follows. Consider
an optimal control u∗(t) and the correspondent trajectory x∗(t) that solves
(2.3) with t0 = t̂ and x0 = x̂. Then, the minimum cost V

(
t̂, x̂

)
is equal to

the running cost from t̂ to a generic t̄ > t̂ following the optimal trajectory
x∗(t) plus the minimum cost V

(
t̄, x∗(t̄)

)
, namely

V
(
t̂, x̂

)
=
ˆ t̄

t̂

L (x∗(s), u∗(s), s) ds+ V
(
t̄, x∗(t̄)

)
Exploiting this idea it is possible to split the whole optimization problem
into infinitesimal problems to obtain the Hamilton Jacobi Bellman PDE.
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Theorem 2.11. [33](Hamilton Jacobi Bellman PDE - necessary
condition)
Consider the optimal control problem (2.8) and the Hamiltonian function
(2.9). If (H1) holds and (H2) holds for each u(t) ∈ U and
V (t, x) : [0,∞[×Rn −→ R is the value function of (2.8) , then on the
region Ω where V is differentiable

Vt +H (t, x, Vx) = 0 (2.13)

The complete proof is provided in Appendix B.
Theorem 2.12. [33](Hamilton Jacobi Bellman PDE - sufficient
condition)
Consider the optimal control problem (2.8) and the Hamiltonian function
(2.9). If (H1) holds and (H2) holds for each u(t) ∈ U and
Ṽ (t, x) : [0,∞[×Rn −→ R is a differentiable function such that

Ṽt +H
(
t, x, Ṽx

)
= 0 (2.14)

on a region Ω, then Ṽ (t, x) is the value function of (2.8) in Ω.

The proof is similar to the one of Theorem 2.11 and can be found in [33]. It
also provides a formula to compute an optimal control function. In particular
it shows that, if V (t, x) : [0,∞[×Rn −→ R is the value function, then
u∗(t, x) : [0,∞[×Rn 7−→ Rm is an optimal control if

u∗(t, x) = arg min
u(t)∈U

(Vx(t, x)f(x, u, t) + L(x, u, t)) (2.15)

However u∗(t, x) may not exist and may not be unique.
The differences between HJB PDE theorem and Pontryagin minimum prin-
ciple are summarized in the following

• Using (2.15), we obtain a feedback optimal control u∗(t, x) because of
the dependence on the state x. In this case, if the initial condition x0
changes , we do not have to recompute the solution, but we simply need
to evaluate u∗(t, x) at a different point. On the contrary, the optimal
control computed by the Pontryagin Minimum Principle, see Theorem
2.8, depends only on t.
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• If we use (2.15) in order to computer the optimal control, we first need
to calculate the value function gradient Vx(t, x) from the Hamilton
Jacobi Bellman PDE (2.14). On the other hand, using the Pontryagin
Minimum Principle, we only need to solve a set of ordinary differential
equations, that need to be satisfied only on a specific trajectory.

• The Pontryagin Minimum Principle produces sufficient conditions only
under restrictive convexity conditions. Indeed it needs (H1), (H2)
,(H3) and (H4) to hold. The scope of the HJB PDE is more general
and therefore it only requires that (H1) and (H2) hold and that the
candidate value function Ṽ (t, x) is differentiable on a region Ω.

Moreover, some studies prove that Theorem 2.12 can be generalized consider-
ing not differentiable candidate value functions Ṽ (t, x). In that case (2.14) is
substituted by a set of inequalities and the solution is referred to as viscosity
solution, see [32] and [34].

2.5 Approximate Solutions

In the previous section we have showed that, if particular assumptions hold,
solving an infinite horizon optimal control problem is equivalent to solving the
HJB PDE (2.14). An explicit feedback solution is provided only in specific
situations such as in linear problems [35] or when the Hamiltonian function
has a particular form [37]. In the general case, it may be hard or impossible
to determine an explicit solution. Hence, the problem of finding approximate
solutions to the PDEs arising from nonlinear control problems becomes very
important. The purpose of this section is to give an idea of the approximate
solutions proposed in the literature.
In recent years, several ways to estimate the solution of the
Hamilton–Jacobi–Bellman PDE, in a neighborhood of an equilibrium point,
have been proposed. For instance in [30] a local solution is calculated and con-
ditions for its existence, for a parametrized family of infinite horizon optimal
control problems, are given. On the other hand, other techniques are focused
on the linearization of the system. For example in [31] the proposed local
solution hinges upon the repeated computation of the steady-state solution
of the Riccati equation. The key idea of the state-dependent Riccati equa-
tion is to calculate the Riccati equation pointwise, using a state-dependent
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linear representation (see [39]). Another approach consists in the problem
linearization, the computation of the solution and of the explicit error esti-
mates which have to be minimized, see [36].
Finally, the procedure proposed in [15] permits to design a dynamic, time-
varying, suboptimal solution of the HJB equation. In particular the infinite
horizon optimal control problem with a stability constraint is considered. As
we will show, the same steps shown in [15] will be adopted in the derivation
of the approximate mean field games solution that is the main topic of this
work.



Chapter 3

Differential Games

3.1 Introduction

Differential games theory is a branch of game theory that studies problems
related to the modeling and analysis of conflict in the context of one or more
dynamical systems. It can be thought of an extension of optimal control
theory where more than one agent and consequently more than one cost
function are considered. Here again, early analyses on this matter were
related to military interests. The study of differential games was initiated
by R. Isaacs and S. Pontryagin in the middle 1950s and it was motivated by
pursuit and evasion problems. In recent years this theory has been of interest
to a big range of applications. It is still used for military purposes. For
instance in [23] the problem is linked to the correct choice of the trajectories
of a storm of aircrafts in an air operation. However it is also used in economic
and management, for example in [24] where a global taxation scheme is
modeled with the goal of limiting environmental pollution of the various
states. Another field of study where this theory is deeply exploited is biology.
For instance in [25] a more formal formulation of the theory of evolution is
given. In particular every living being is modeled as a player of a game where
the purpose is the survival of the species. Finally, differential games theory is
also applicable to problems involving multi-agent systems, which are widely
studied in recent years, see [26].
In this chapter we want to give an overview of differential game theory.
Moreover we intend to show the different formulations of the problem and

19
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to provide the mathematical tools required for its solution. In particular we
intend to focus on nonzero-sum games e.g. games in which the gain of a player
is not necessary linked to the loss of another one. This choice is made because
mean field games, the main topic of this work, can precisely be thought of
a class of nonzero sum differential games. Infinite time horizon will be also
considered for the same reasons given in the previous chapter. Finally, in the
section 3.4 approximate solutions are introduced. Their meaning is explained
and the technique used for their computation is analyzed.

3.2 Game Theory

In order to give to the reader a better understanding of the new issues emerg-
ing when we study a problem of differential games, it is helpful to analyze
first some simple 2-player games. Indeed the issues emerging in this reduced
framework are the same ones that characterize N -player differential games.
Definition 3.1. [28](2-Player Classical Game) A 2-player game involves
2 rational agents called players p1 and p2 and is defined by the 4-tuple
{S1, S2, f1 (·, ·) , f2 (·, ·)} where

• for i = 1, 2, Si ⊆ R is a set from which the player pi can choose an
element ui called strategy;

• for i = 1, 2, fi (u1, u2) : S1 × S2 7−→ R is the function that the player
pi has to minimize with his choice of ui.

If f1 (u1, u2) + f2 (u1, u2) = 0 the game is called zero-sum game. In this
case the gain of a player corresponds to the loss of the other one. In other
words their goals are completely opposite because f1 (u1, u2) = −f2 (u1, u2).
However, in some games one can encounter “win-win situations” which result
in a positive outcome for both parties. Such frameworks, and many others,
are not captured by zero-sum games. For this reason we will study the more
general case of nonzero sum games. In this situation the players’ goals can
be unrelated. In that way they do not have to be in competition with each
other and they may play cooperatively, if it is beneficial.
Note that in this framework it is in general very difficult to find strategies
u1 and u2 that permits to minimize both f1 (·, ·) and f2 (·, ·) simultaneously.
For this reason we have to introduce the concept of equilibrium.



3.2. GAME THEORY 21

Definition 3.2. [28](Nash Equilibrium) A pair (ū1, ū2) ∈ S1×S2 is called
a Nash equilibrium of the problem posed in Definition 3.1 iff1 (ū1, ū2) ≤ f1 (u1, ū2) ∀u1 ∈ S1

f2 (ū1, ū2) ≤ f2 (ū1, u2) ∀u2 ∈ S2

The Nash equilibrium concept was first studied by A.Cournot in [40] in the
oligopoly theory. Then it was investigated by J. Nash who proved the exis-
tence of such equilibrium in the particular N-person game proposed in [41].
The main feature of this solution concept is that neither of the players can
decrease his cost by changing unilaterally his own strategy, as long as the
other player sticks to the equilibrium solution.

Roughly speaking, in a Nash equilibrium situation, a player is assumed to
know the equilibrium strategy of the other one and it has nothing to gain
by changing his own strategy. Obviously this concept, as we will see, can
be extended also to N -player games and N -player differential games. Note
that, in addition to Nash equilibrium, other kinds of equilibrium conditions
are defined in literature, see, for example, [18] and [28]. Some of them are,
for instance,

• minimax that is the pair (ū1, ū2) where ū1 is the best strategy that
player p1 can choose in order to minimize his cost assuming ū2 is the
worst possible. The same holds with symmetry for ū2.

• Pareto optimality that is the pair (ū1, ū2) such that there exists no
other pair (u1, u2) ∈ S1 × S2 such that

f1 (u1, u2) ≤ f1 (ū1, ū2) i = 1, 2
and at least one of the inequalities is strict.

Nevertheless the purpose of this chapter is to provide the key concepts useful
for the comprehension of mean field games. In the mean field games frame-
work a solution is considered optimal when Nash equilibrium conditions hold.
For this reason we do not go further talking about other equilibrium condi-
tions and we focus only on Nash equilibrium. We in particular stress that
Nash equilibrium is not the set of the strategies that minimize each player
cost function. Moreover it does not necessarily exist or, on the contrary,
Nash equilibrium might exist but not be unique. In that case, as it is shown
in some examples in [28], different Nash equilibria can yield different costs
for each player.
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3.3 Definitions and properties

The issues that we have showed, for the sake of simplicity, for 2-player game
characterize also the N -player game and the N -player differential game. The
latter, in particular, differs from a classical game like the one described in
Definition 3.1 because the strategies ui are substituted by smooth functions
u(t) : [0,∞[ 7−→ Rb. Roughly speaking, each player can change his choice at
every instant t.

Definition 3.3. [18](N-player Differential game) AN -player differential
game consists on the following elements

• a finite set of players P where |P | = N and hence P can be described
as P = {1, 2, 3 . . . N};

• the set X of the bounded smooth functions
x(t) : [0,∞[ 7−→ Rd where d is the state dimension;

• the set U of the bounded smooth functions
u(t) : [0,∞[ 7−→ Rb where b is the control input dimension;

• two injective functions Γ1 : P 7−→ X and Γ2 : P 7−→ U such that each
player p ∈ P is associated with both a state xp(t) and an input up(t);

• N known dynamic equations of the form

ẋi(t) = f i(xi(t), u1(t), . . . uN(t), t) ∀i = 1, 2, . . . N

that describe how the state of each player i changes;

• N control functions ui(t);

• N known cost functions J i
[
x1, x2, . . . xN , u1, u2, . . . uN

]
of the form

J i = lim
T−→∞

ˆ T

0
Li
(
x1, x2, . . . xN , u1, u2, . . . uN

)
dt (3.1)

where L : RdN × RbN × [0,∞[ 7−→ R smooth and 1 ≤ i ≤ N ;
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• N known initial conditions
(
x1

0, x
2
0, . . . x

N
0

)
with xi0 ∈ Rd and N known

initial instants
(
t10, t

2
0, . . . t

N
0

)
with ti0 ∈ R ∀i = 1, 2, . . . N such that

xi0 = xi(ti0) ∀i = 1, 2, . . . N

• for each player 1 ≤ i ≤ N the problemminui(t)∈U limT−→∞
´ T

0 Li
(
x1, x2, . . . xi, . . . xN , u1, u2, . . . ui, . . . uN

)
dt

ẋi(t) = f i(xi(t), u1(t), . . . uN(t), t) xi(ti0) = xi0
(3.2)

to solve by choosing an appropriate ui(t) or ui(xi, t) in case of feedback
strategies.

Note that a differential game is typically described only by the expression
(3.2) in order to simplify the notation.
Moreover, even in this case, the cost function can be substituted with the
average cost (2.7) or the discounted cost (2.6) depending on the situation
that has to be modeled.
Watching the definition and in particular system (3.2), the link between dif-
ferential games problems and optimal control problems is clear. Indeed the
latter, described by (2.8), can be thought of a 1-player differential game. In
this context the set of the control inputs

(
u1(t), . . . uN(t)

)
is still called strat-

egy. Moreover, like in classical games, and differently from optimal control
problems, we have to define what we mean by optimal solution. As we notice
from the dependencies of the cost function J i

(
x1, x2, . . . xN , u1, u2, . . . uN

)
,

the gain of the i-th player depends, in general, on the state of the other players(
x1, x2, . . . , xi−1, xi+1, . . . xN

)
and on their control inputs(

u1, u2, . . . , ui−1, ui+1, . . . uN
)
too. Therefore, as we saw in the previous

section, we need to define the Nash equilibrium concept.
In case of optimal control we did not dwell on the differences between open-
loop and closed-loop solutions. Nevertheless, it is necessary to do it for
differential games. Indeed, exactly as in the optimal control case, on one hand
Pontryagin minimum principle can be used to find necessary conditions for
the optimality of a vector

(
u1(t), u2(t), . . . uN(t)

)
for the open-loop system.

On the other hand HJB PDE can be exploited to find sufficient conditions
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for the optimality of a vector
(
u1(x), u2(x), . . . uN(x)

)
for the closed-loop

system. Finally note that the terms “optimum”, “solution” and “equilibrium”
will be used interchangeably with the same meaning.
In order to make the notation easier, a new column vector

X(t) =
((
x1(t)

)T
, . . .

(
xi(t)

)T
, . . .

(
xN(t)

)T)T
∈ RdN

is defined. It consists of the piled states of all players and it gives a complete
information about the differential game state in a particular instant. Conse-
quently the initial condition set

(
x1

0, x
2
0, . . . x

N
0

)
is also called

X0 =
((
x1

0

)T
, . . .

(
xi0
)T
, . . .

(
xN0
)T)T

∈ RdN

and T0 =
(
t10 . . . t

N
0

)
∈ RN are the instants which we know the initial condi-

tion xi0 for each player i at.
We also remark that the state is often shared i.e. xi(t) = xj(t) for each
i, j = 1 . . . N . Refer to [7] for a complete background on differential games.

3.3.1 Open-loop Nash Equilibria and Admissible Strate-
gies

Definition 3.4. [18](Open-Loop Nash Equilibrium) A vector of con-
trol functions

(
ū1(t), ū2(t), . . . ūN(t)

)
is a Nash equilibrium for a differential

game described in 3.3 if the following condition holds for each player i.e. for
every 1 ≤ i ≤ N

• The control ūi(t) is a solution to the optimal
control problem for the i-th player with fixed(
u1, . . . ui−1, ui+1, . . . uN

)
=
(
ū1, . . . ūi−1, ūi+1, . . . ūN

)
, namelyminui∈U

´∞
0 Li

(
x1, . . . xN , ū1, . . . ui, ūi+1, . . . ūN

)
dt

ẋi(t) = f i(xi(t), ū1(t), . . . ui(t), . . . , ūN(t), t) xi(ti0) = xi0

This definition of Nash equilibrium itself poses a N -player differential game
as N optimal control problems that are coupled. Therefore the techniques



3.3. DEFINITIONS AND PROPERTIES 25

we have shown for optimal control problems can be used to formulate nec-
essary conditions for Nash optimality. In particular, in the open-loop case,
Pontryagin Minimum Principle can be applied. If (H1), (H2) and (H3)
hold for each 1 ≤ i ≤ N , then a optimum candidate

(
ũ1(t), ũ2(t), . . . ũN(t)

)
can be found using this technique:

1. Compute the vector
(
ũ1(t, x1, . . . xN , p1), . . . ũN(t, x1, . . . xN , pN)

)
such

as

ũi
(
t, x1 . . . xN , pi

)
=

arg infui∈U
{
pif i(xi, ui, t) + Li

(
x1, . . . xN , ũ1, . . . , ui, . . . ũN

)}
for each 1 ≤ i ≤ N . Note that an infimum may not exist or, if it exists,
it may not be unique.

2. According to the Theorem 2.7, substitute the vector(
ũ1(t, x1, . . . xN , p1), . . . ũN(t, x1, . . . xN , pN)

)
in the following system of

3N equations
ṗi(t) = −pi(t)

[
∂f i(xi(t),ũ1,... ũi(t,x1,...xNpi),... ũN ,t)

∂xi

]
−
[
∂Li(x1,...xN ,ũ1,...ũN)

∂xi

]
ẋi(t) = f i

(
xi(t), ũ1, . . . ũi(t, x1, . . . xNpi), . . . ũN , t

)
xi(ti0) = xi0

(3.3)
for each 1 ≤ i ≤ N .

3. If the system (3.3) has a solution
(
x̂1(t), . . . x̂N(t), p̂1(t), . . . p̂N(t)

)
, then

the candidate optimal solution
(
ũ1(t), ũ2(t), . . . ũN(t)

)
is given by

ũi(t) = ũi
(
t, x̂1(t), . . . x̂N(t), p̂i(t)

)
for each 1 ≤ i ≤ N .

As we have shown, Pontryagin Minimum Principle provides just necessary
conditions for a solution of the differential game. For this reason it may be im-
possible to use the previous procedure because, for instance, system (3.3) may
have no solution. Furthermore, even if a candidate
ũ1(t) = ũi

(
t, x1(t), . . . xN(t), pi(t)

)
can be found, it may not be a Nash equi-

librium.
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3.3.2 Closed-loop Nash Equilibria and Admissible Strate-
gies

Because of this lack of sufficient conditions for the optimal solutions, differ-
ential games problems are usually solved, when it is possible, using feedback
control that is by resorting to a control function with an explicit dependence
on the system state, namely ui(t, x1, . . . xN) : [0,∞[×RdN −→ Rb. Closed-
loop control can be implemented only if each player i can observe all players
states X(t) =

(
(x1(t))T , . . . (xi(t))T , . . .

(
xN(t)

)T)T
. For this kind of prob-

lems, as we have shown in Section 4.3, it is possible to apply the Theorem
2.12 in order to obtain sufficient conditions for optimality.
The definition of the closed loop Nash equilibrium is given in the following.

Definition 3.5. [18](Closed-Loop Nash Equilibrium) A vector of con-
trol functions

(
ū1(t,X), ū2(t,X), . . . ūN(t,X)

)
is a Nash equilibrium for the

N coupled problems (3.2) if the following condition holds for each player, i.e.
for 1 ≤ i ≤ N

• The control ūi(t,X) is a solution to the optimal control problem for the
i-th player with fixed(
u1, . . . ui−1, ui+1, . . . uN

)
=
(
ū1, . . . ūi−1, ūi+1, . . . ūN

)
i.e.minui∈U

´∞
0 Li

(
X(t), ū1(t,X), . . . ūi−1(t,X), ui(t,X), . . . ūN(t,X)

)
dt

ẋi(t) = f i(xi(t), ū1(t,X), . . . ui(t,X), . . . , ūN(t,X), t) xi(ti0) = xi0
(3.4)

where
J i
[
ū1, . . . ui, . . . ūN , X0, T0

]
=
´∞

0 Li
(
X(t), ū1, . . . ui, . . . ūN

)
dt is the

cost function for each player i.

This definition of a feedback Nash equilibrium permits to consider the N -
player differential game as N coupled optimal control problems. Hence,
once again, the techniques we have shown for optimal control problems
can be used to formulate sufficient conditions for Nash optimality. Let(
ū1(t,X), ū2(t,X), . . . ūN(t,X)

)
be a Nash equilibrium and

X̄(t) =
(

(x̄1(t))T , . . . (x̄i(t))T , . . .
(
x̄N(t)

)T)T
the vector of the correspond-

ing trajectories. We can define, for each player i, a value function vi(t, x) as
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follows

vi(ti0, xi0) = J i
[
ū1, . . . ūN , X0, T0

]
= lim

T−→∞

ˆ T

0
Li
(
X(t), ū1(t), . . . ūN(t), t

)
dt

where the trajectory x̄i(t) obeys the dynamic equation
˙̄xi(t) = f i(x̄i(t), ū1(t,X), . . . , ūN(t,X), t) x̄i(ti0) = xi0

If (H1) and (H2) hold, exploiting Theorem 2.12, we know that each value
function has to satisfy the following system of N HJB equations

v1
t (t, x) +H

(
t, X̄(t), v1

x(t, x1)
)

= 0
...
vNt (t, x) +H

(
t, X̄(t), vNx (t, xN)

)
= 0

(3.5)

where, according to the conventions used in this work,
vx(t, x) = ∂v

∂x
=
(
∂v
∂x1
, ∂v
∂x2
· · · ∂v

∂xn

)
∈ R1×d

vt(t, x) = ∂v
∂t
∈ R

Substituting the Hamiltonian function computed in this case we have that
(3.5) becomes
v1
t (t, x1)− v1

x(t, x1)f 1
(
x̄1(t), ū1, . . . , ūN , t

)
− L1

(
X̄, ū1, . . . ūN , t

)
= 0

...
vNt (t, xN)− vNx (t, xN)fN

(
x̄N(t), ū1, . . . , ūN , t

)
− LN

(
X̄, ū1, . . . ūN , t

)
= 0
(3.6)

where the controls ūiare given by

ūi(t,X, vi) = arg inf
ui∈U

{
vi · f i(xi, ui, t) + Li

(
X, ū1, . . . ūi−1, ui, ūi+1, . . . ūN

)}
To sum up, the procedure that the Theorem 2.12 proposes in order to find a
Nash equilibrium is

1. Compute the vector
(
ū1(t,X, v1), . . . ūN(t,X, vN)

)
such as

ūi(t,X, vi) = ūi(t,X, vi) =
arg infui∈U

{
vi · f i(xi, ū1, . . . ui, . . . ūN , t) + Li

(
X, ū1, . . . , ui, . . . ūN

)}
for each 1 ≤ i ≤ N . Note that an infimum may not exist or, if it exists,
it may not be unique.
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2. Solve the system (3.6) and, if it has a solution
(
v̂1(t, x1), . . . v̂N(t, xN)

)
,

the optimal control exists and is given by

ūi(t,X, v̂i(t, xi)) = ūi(t,X)

for each 1 ≤ i ≤ N .

In the closed-loop case we have some sufficient conditions and a procedure
that permits to find at least one equilibrium, if it exists. Nevertheless, as
in the case of optimal control, we need to solve a system of PDEs and an
explicit solution is often impossible to find.
A way to simplify (3.6) is to consider only time-invariant value functions, i.e.(
v1(t, x1), . . . vN(t, xN)

)
such that

vi(t1, xi) = vi(t2, xi) ∀t1, t2 > 0

for each 1 ≤ i ≤ N . In order to do that it is sufficient to consider (3.6) where
vit(t, xi) = 0 for each 1 ≤ i ≤ N , namely

v1
x(x1) · f 1 (x̄1(t), ū1, t) + L1

(
X̄, ū1, . . . ū1

)
= 0

...
vNx (xN) · fN

(
x̄N(t), ūN , t

)
+ LN

(
X̄, ūN , . . . ūN

)
= 0

(3.7)

If at least one solution of (3.7) exists, the problem is referred to as stationary.
In this case the time dependence is irrelevant and therefore the i-th player
value function is simply indicated as vi(xi). This will be one of the key
concepts of the next chapter.

3.4 Approximate Solutions

We saw that finding a Nash equilibrium for a infinite horizon differential game
is equivalent to solving the system of PDEs (3.6) or, in the stationary case, the
system of PDEs (3.7). However, an explicit solution(
ū1(t,X), ū2(t,X), . . . ūN(t,X)

)
can be computed only for a very narrow

class of problems. For instance, the equilibrium for some simple linear
quadratic differential games is explicitly found in [42] and some important



3.4. APPROXIMATE SOLUTIONS 29

results about uniqueness and existence of solutions are provided in [54]. In
order to solve the more general and complex problems arising for example
from biology, economics or social sciences it is necessary to study a way to
construct approximate solutions. The purpose of this section is to provide
information about the most recent studies about approximate solutions for
differential games.
A significant amount of work has been done in the field of zero-sum games.
For example an approximate equilibrium for some problems with direct prac-
tical applications to warfare and pursuit is provided in [25] and [29]. The
technique adopted in these papers consists in linearizing the system dynamics
around the origin and computing an explicit solution of the linearized prob-
lem. Only a small number of publications deal with nonzero-sum differential
games. For example we can mention some remarks made in [36] and [39]
about the extension of the procedures used for the optimal control problems.
A complete analysis about the Nash equilibria of a class of infinite horizon,
nonzero-sum differential games is finally studied in [16]. In this paper the
results of [15] are extended. In particular a strategy to find an approximate
Nash equilibrium simply solving partial differential inequalities is proposed.
These results will be also exploited in the following chapters in order to
construct an approximate solution of mean field games.
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Chapter 4

Stationary Mean Field Games

4.1 Introduction

The theory of mean field games is a branch of game theory and it is relatively
recent. It was created in 2006 by J.-M. Lasry and P.-L. Lions and the first
results and definitions were presented in [1]. Around the same time it was
also developed independently by M. Huang, P.E. Caines and R.P. Malhame,
see [2]. Advances in population dynamics were moreover made by Olivier
Gulant, see [3]. Then, since 2009, some authors added further contributions
or worked on new properties and applications of mean field games models.

A mean field game is a game that, as a differential game, can be described by
a system of PDEs . However, in mean field games theory, three innovative
key concepts are introduced

1. infinitely many identical players are considered and each one has
a cost to minimize or maximize and can create their strategies based
on the mean values of the other players’ states;

2. the game is studied as the interaction of each player with the
rest of the group and vice versa. In other words the whole system
is defined by considering separately the influence of each individual on
the mass of the other players and the influence of the mass of the other
players on each individual;

31
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3. players are not in total control of their strategies because of an exter-
nal noise modeled as a Brownian motion.

Each of these new ideas find an application in different fields of science.

For example, the fact that mean field games deal with games with infinitely
many identical players is exploited in game theory. As we have seen, differen-
tial games with N -players can be summed up by a system of HJB equations
that often turns out to be very difficult to solve. Luckily, things become
simpler, at least for a wide range of games that are symmetrical as far as
players are concerned, when the number of players increases. Indeed, com-
plex strategies can no longer be implemented by players because each player,
in the eyes of other players, is progressively lost in the crowd when the num-
ber of players increases. Moving to the limit causes a situation in which each
player becomes infinitesimal in the middle of the group of the other players.
Therefore players build their strategies on the basis of their own state and
the mean of the states of the infinite mass of the other players. They in turn
create their strategies in the same way. For this reason, a complex system
with mutual interaction between each couple of players can be simplified,
using mean field games approach, considering only the interaction between
a player and the mass of the others and vice versa.

This aspect is crucial, in particular, in particle physics. Indeed mean field
theory represents a highly effective methodology for handling a wide variety
of situations in which there is a large number of particles. In such cases
the dynamics can no longer be described by modeling all the inter-particle
interactions. Therefore it is very useful to introduce the concept of mean
field. This latter is a statistical description of the behavior of a set made by
a huge number of elements. Using this notion it is possible to construct an
approximation of the situation. The mean field plays the role of a mediator
between a single particle and rest of the system. In other words, the mean
field games theory allows to separately describe the contribution of each
particle to the creation of a mean field and the effect of the mean field on
each particle, see, for example, [49].

Mean field games theory is also used in economics where, on the contrary,
agents usually have little concern about each other because everyone looks
only to his own interest and to market prices. Indeed this theory can be
exploited to model external phenomena with statistical nature that are very
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common in the economic framework. Therefore most mean field games mod-
els are used not only to describe but also, and more importantly, to explain
a phenomenon and hence to predict future developments. The latter is a
crucial aspect in economics, see, for instance, [46].

Mean field applications are many and diverse, see, for instance, [52] and [50]
where crown dynamics and social interactions are studied or [5] where the
opinions making process in analyzed.

In this chapter, a formal description of mean field games, a definition of
what is usually meant by mean field game solution and a way to construct it
will be provided. All the concepts used to explain optimal control problems
and differential games will be reused. Moreover some new concepts will be
introduced to model the three previously described key concepts of mean
field games. The concept of stationary solution will be investigated again
and its interpretation will be provided.

In the last section of the chapter, an approximate solution of a class of mean
field games will be constructed. A proof of the accuracy of the proposed
approximate solution will be presented and its effectiveness will be shown in
a numerical example. We remark that, in this last section, a very innovative
topic is proposed because there are very few publications dealing with ap-
proximation problems for mean field games, see for example [51]. Moreover
some explicit solutions are only provided for a very narrow class of mean field
games such as the linear quadratic ones in [4] and [6]. Even if the approach
is the same used in [15] and [16], several new ideas are here introduced in
order to manage the deeply different structure of the involved equations.

4.2 Definition

We start by introducing the definition of Brownian motion

Definition 4.1. [47](Brownian motion) A Brownian motion is a set of
random variables indexed by time t denoted by W (t) and such that

• W (0) = 0 with probability 1;

• the function t 7−→ W (t) is continuous on [0, T ] for each T > 0;
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• for 0 < s < t the increment W (t)−W (s) is a random normal variable
of mean 0 and variance t− s namely W (t)−W (s) ∼ N (0, t− s);

• for 0 < s < t < u < v the increments W (t)−W (s) and W (v)−W (u)
are independent.

Extending the definition provided in [1] we define a nonlinear mean field
game as follows.
Definition 4.2. [1](Mean field game) A mean field game consists of the
following elements

• an infinite set of players P , where |P | =∞, and such that there exists
a bijective correspondence between P and the real numbers set R. In
this way each real number identifies a player;

• a constant t0 ≥ 0 that represents the time instant at which we assume
to know the initial conditions of the problem;

• the set X of the bounded smooth functions x(t) : [0,∞[ 7−→ Rd where
d is the dimension of the state;

• a given function m0(x) : Rd 7−→ [0,+∞[, that will be referred to as
initial population density function, satisfying the following conditionˆ

Rd

m0(x)dx0 = 1

where m0(x) > 0 for each x ∈ Rd and, for each player, m0(x̄0)dx
is the probability that the initial state at t0 of such player is in the
infinitesimal range [x̄0, x̄0 + dx0];

• a given function m(x, t) : Rd 7−→ [0,+∞[, that will be referred to as
population density function, such thatˆ

Rd

m(x, t)dx = 1 ∀t ≥ 0

where m(x) > 0 for each x ∈ Rd. For each player, m(x̄)dx is the
probability that the state of such a player is in the infinitesimal range
[x̄, x̄+ dx] at time t ≥ 0. Because of the definition of initial population
density function we have that m0(x) = m(x, t0) for each x ∈ Rd;
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• the set Ux of the bounded smooth functions
u(x,m, t) : Rd × [0,∞[×[0,∞[ 7−→ Rb where b is the dimension of the
control input;

• a d-dimension standard Brownian motion
W (t) = (W1(t),W2(t) . . . Wd(t))T where Wi(t) and Wj(t) are Brow-
nian motions and they are independent of each other for each i 6= j;

• an initial condition x0 ∈ Rd that is a realization of the stochastic vari-
able that has m0(x) as probability density function;

• a known dynamic equation, that is the same for all players, given by

ẋ(t) = f(x(t), u(x,m, t), t) + σẆ (t) x(t0) = x0 (4.1)

that describes how each player’s state changes as a result of the input
u(x,m, t). We have that f(x, u, t) : Rd × Rb × [0,∞[ 7−→ Rd is smooth
and σ ∈ Rd×d is a matrix with det (σ) 6= 0;

• a known cost function, that is the same for each player, given by

J (x0, u(x,m(x), t), x(t),m(x)) :=
limT−→∞E

´ T
0 L (u(x,m, t), x(t),m(x), t) dt (4.2)

where L (u(x,m(x), t), x(t),m(x), t) : Rb × Rd × [0,∞[×[0,∞[ 7−→ R is
smooth;

• the problem


u(x,m, t) = arg minu(x,m,t)∈Ux

(
E
´∞

0 L (u(x,m, t), x(t),m(x, t), t) dt
)

ẋ(t) = f(x(t), u(x,m, t), t) + σ(x)W (t)´
Rdm(x)dx = 1 ∀t ≥ 0
x(t0) = x0

m(x, t0) = m0(x)
(4.3)

that has to be solved by choosing a proper feedback control u(x,m, t)
and consequently a population distribution m(x, t).
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Remark 4.3. In the mean field games framework only feedback control laws
of the form u(x,m, t) with an explicit dependence on x are considered. This
aspect is consistent with the idea of partitioning the whole system into two
sets: a set with a single player and another set with the remaining players.
Indeed, in this way, each player can choose his input according to his own
state x and the statistical information m about the other players’ states but
can not use information about the state of a particular other player.

Note that every player is equal i.e. each player has the same dynamics and the
same cost function. For this reason the players will be referred to as identical.
Moreover a feedback solution ū(x,m, t) that can be found by solving problem
(4.3) is obviously the same for each player. This is the reason why in the
definition and in (4.3), differently from the differential games framework,
the symbols ui(x,m, t) and xi(t) with the i apex are not used. Because of
what we have just explained, in the mean field game problems the concept of
optimal solution that we have introduced in the Chapter 2 and the concept
of Nash equilibrium that we have described in the Chapter 3 are the same.
Indeed the conditions (2.8) and (3.4) are equivalent in case identical players
are considered. From now on we will use the words solution, equilibrium
or optimum with the same meaning intending the pair of smooth functions
(u(x,m, t),m(x)) that solve the system (4.3).
Remark 4.4. As we said, each player has the same dynamic equation and the
same control input is used. However, considering two players r, s ∈ R with
r 6= s, it is not true that xr(t) = xs(t) ∀t ≥ 0. Indeed, each player’s state is
generally different from the others due to

• initial conditions that are governed by m0(x) and therefore are gener-
ally different for each player;

• Brownian motion that influences the dynamics and is independent for
each player.

4.3 HJB and FPK Equations

The equilibrium of a mean field game is given by the solution of the system
(4.3). It can be thought of as an optimization problem where two constraints
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are present. The first one is the differential equation that describes the
dynamics of each player and the second one is given by the fact that the
integral of the population density function m(x, t) in Rd has to be equal to 1,
because it is a probability density function. Paradoxically, the fact that we
are considering infinitely many players described by a single function m(x, t)
allows us to consider the mean field game as a single player optimal control
problem. Indeed a value function v(x,m, t) : Rd × [0,∞[×[0,∞[ 7−→ R can
be defined as follows

v(x̂0, m̂0(x), t̂0) = inf
u(x,m)∈Ux

lim
T−→∞

E

ˆ T

0
L (ū(x,m), x̄(t), m̄(x, t), t) dt (4.4)

where

• (ū(x,m), m̄(x, t)) is the optimal solution of (4.3) with initial conditions
m(x, t̂0) = m̂0(x) and x(t̂0) = x̂0;

• x̄(t) is the solution of (4.1) corresponding to the input ū(x,m) with
x(0) = x̂0. It is a stochastic process because of the Brownian motion
but, in (4.4), we are considering its expectation that is deterministic.

As in the optimal control problems and differential games, there exists a
system of PDEs to solve in order to find the optimal solution, namely the
couple (u(x,m, t),m(x, t)). In this case the system is the following one −vt(x, t)− tr(νvxx(x,m, t)) +H(x, vx(x,m, t),m) = 0

−mt(x, t)− tr(νmxx(x, t))− div
(
∂H(x,vx(x,m,t),m)

∂p
m(x, t)

)
= 0

(4.5)

where

• div(·) and tr(·) are respectively the divergence and the trace operator;

• H(x, p,m) is the minimized Hamiltonian defined by (2.9) where m is
regarded as constant;

• v(x,m) is the value function described by (4.4);

• vx, vxx, mx, mxx are the gradients and the Hessian matrices of v(x)
and m(x), respectively. Note that gradients are considered row vectors
according to the convention adopted in this whole thesis;
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• ν ∈ Rd×d is a matrix and it can be calculated by the expression ν = σσT

2 .

Moreover the optimal control u(x,m, t), as in the singular player case and
according to (2.15), is given by

u(t,m, x) = arg min
u(t)∈U

(vx(t,m, x)f(x, u, t) + L(u, x,m, t)) (4.6)

Remark 4.5. The first PDE of (4.5) is a stochastic HJB equation that differs
from (2.14) because of the term tr(νvxx(x,m, t)) that is due to the presence of
the Brownian motion. This PDE is linked not only to the cost function and to
the dynamics but also to m(x, t) and is used to find the optimal control input
for each player. Roughly speaking it describes how each player’s behavior is
influenced by the other players’ behavior that is modeled by m(x, t).
Remark 4.6. The second PDE of (4.5) is referred to as
Fokker-Planck-Kolmogorov (FPK) equation. It describes the way in which
each player’s control input u(x,m, t) influences the density function m(x, t).
Roughly speaking it describes how the behavior of the mass of players is
influenced by each player’s behavior.

The formal derivation of the equations requires concepts of stochastic dif-
ferential games and diffusion processes that we will not deal with in this
work. We simply note that the derivation of HJB equation is similar to the
procedure that we have shown in Theorem 2.12. The only difference is the
fact that now we have to consider the presence of the Brownian motion and
hence we have the additional term tr(νvxx(x,m, t)). For a full explanation
of the derivation of the HJB stochastic equation see [48]. While for further
informations about the FPK equation see [47].
In the literature the PDE (4.5) alone, due to a language misuse, is often
referred to as mean field game and the other details are neglected. The
solution of (4.5) is often difficult or impossible to explicitly compute. For this
reason, in particular applications, numerical techniques are used as explained
in [43]. Moreover no conditions for the existence or the uniqueness of the
solution are currently available in literature in the general case. For this
reason currently we can only say that, if a pair (u(x,m, t),m(x, t)) satisfies
(4.5) it is an equilibrium for the problem defined in Definition 4.2.
In the mean field game framework the concept of stationary solution can be
explained by taking into account the three following cases
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1. stationary w.r.t. control solution (u(x,m),m(x, t)) that is an equilib-
rium where the control u(x,m) does not depend explicitly on time.
This means that the value function is the same for each initial instant
t0 when we know the initial conditions x0 and m0 namely

v(x0,m0, t1) = v(x0,m0, t2) ∀t1, t2 ≥ 0

This implies that vt(x, t) = 0 and consequently the HJB equation be-
comes

−tr(νvxx(x,m, t)) +H(x, vx(x,m, t),m) = 0
Note that, even if the optimal control depends only on the player’s
state x and the “system state” m, the population density function can
change over time.

2. stationary w.r.t. population density function solution (u(x,m, t),m(x))
that is an equilibrium where the population density function m(x) does
not depend explicitly on time. This means that the density function
that describes the other players’ state is always the same namely

m(x, t1) = m(x, t2) ∀t1, t2 ≥ 0

Note that this does not mean that each player’s state remains forever
the same, but simply that their motion is such that their distribution re-
mains constant. Such a motion can be generated by a control u(x,m, t)
explicitly depending on time. Moreover note that, in this case, the ini-
tial population distribution m0(x) may be unknown. Indeed such a
stationary solution (u(x,m, t),m(x)) is meant to be the approximation
of the behavior of a mean field game after a very long time when the
contribution of the initial condition m0(x) has disappeared and m(x, t)
is almost constant in time. Such a situation implies that mt(x, t) = 0
and, consequently, the FPK equation becomes

−tr(νmxx(x, t))− div
(
∂H(x, vx(x,m, t),m)

∂p
m(x, t)

)
= 0

In the case that we want to impose an initial condition m0(x) it follows
that m(x, t) = m0(x) for each t > 0. Therefore the stationary solution
is (u(x,m, t),m0(x)) where u(x,m, t) is a control input that minimizes
the cost function (4.2) maintaining a constant population density.
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3. stationary both w.r.t. population density function and w.r.t. control
solution (u(x,m),m(x)) that is an equilibrium where both the control
u(x,m) and the population density function m(x) do not depend ex-
plicitly on time. In this situation we have both the previously explained
phenomena and consequently (4.5) reads −tr(νvxx(x,m, t)) +H(x, vx(x,m, t),m) = 0

−tr(νmxx(x, t))− div
(
∂H(x,vx(x,m,t),m)

∂p
m(x, t)

)
= 0

(4.7)

In the literature a mean field game described by the system (4.5) where
vt(x, t) = 0 and consequently admitting only stationary w.r.t. control solu-
tion (u(x,m),m(x, t)) is referred to as stationary w.r.t. control mean field
game. The same holds for the other two stationary cases in particular a sta-
tionary both w.r.t. population density function and w.r.t. control mean field
game is simply referred to as stationary mean field game. The latter is the
focus of this work and an approach for constructing approximate solutions
for such problems will be provided in the following sections.
Finally we remark that, in mean field games, discounted or average cost
functions are almost always used instead of (4.2). They are expressed as

Jdisc (x0, u, x,m0) := lim
T−→∞

E

ˆ T

0
e−αtL (u(x,m, t), x(t),m(x)) dt (4.8)

and

Jave (x0, u, x,m0) := lim
T−→∞

1
T
E

ˆ T

0
L (u(x,m, t), x(t),m(x)) dt (4.9)

respectively. Consequently the correspondent HJB equations become
αv(x, t)− vt(x, t)− tr(νvxx(x,m, t)) +H(x, vx(x,m, t),m) = 0 (4.10)

in the discounted cost function case, where α > 0 is the same constant
appearing in (4.8), and

λ− vt(x, t)− tr(νvxx(x,m, t)) +H(x, vx(x,m, t),m) = 0 (4.11)
in the average cost function case where λ is an unknown constant to be
determined.
Short proofs for the derivation of HJB PDEs with discounted and average
cost function are available in [44] and in [45], respectively. Note that, if we
use the average cost, the solution of the corresponding system of HJB FPK
PDEs is the triple (u(x,m, t),m(x, t), λ).
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4.4 Proposed Approximate Solution

4.4.1 Stationary Problem

In this section we want to provide a dynamic method for constructing a
local approximate solution of a specific class of stationary mean field
games. This class is chosen firstly because (4.7) is simpler than (4.5) to
solve and secondly because we want to exploit the results provided in [15]
where an explicit solution of a stationary linear quadratic mean field game
is computed. Our aim is to use those results to design a local solution of a
nonlinear stationary mean field game that, if linearized around the origin,
becomes exactly like the one studied in [15]. Moreover the main strength of
the approximate equilibrium that we want to propose is the fact that it can
be found by simply solving algebraic inequalities instead of PDEs.
The class of stationary mean field games that we want to study is character-
ized by the following dynamic equation for each player

dx(t) = [f(x(t)) + g(x(t))u(x)] dt+ σdW (t) x(0) = x0

or equivalently

ẋ = f(x) + g(x)u(x) + σẆ x(0) = x0 (4.12)

where

• d is the dimension of the state;

• b is the dimension of the input;

• x(t) : [0,∞[ 7−→ Rd is the state of the player that we are considering
and it is an element of the states set X ;

• u(x) : Rd 7−→ Rb represents the control and that we have to choose
and it is an element of the bounded smooth functions set Ux;

• x0 ∈ Rd is the initial state;

• f(x) : Rd 7−→ Rd is a C2 class function or, in other words, is a function
that can be differentiated at least twice. It is given and it represents,
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roughly speaking, how the state behaves in the absence of input sig-
nals. Moreover f(x) is such that f(0) = 0 therefore there exists some,
possibly not unique, smooth function F (x) : Rd 7−→ Rd×d such that
f(x) = F (x)x for all x;

• g(x) : Rd 7−→ Rd×b is another C2 class function and describes the way
in which the state x(t) is affected by the control u(x);

• σ ∈ Rd×d is a matrix such that det(σ) 6= 0 and tr(σ) > 0. It quantifies
the noise contribution;

• W (t) = (W1(t),W2(t) . . . Wd(t))T is the d-dimension standard Brow-
nian motion where Wi(t) and Wj(t) are independent for each i 6= j.

Finally, as we said, the population distribution function m(x) is
m(x) : Rd 7−→ [0,+∞[ and, since it is a probability density function, it
holds that ˆ

Rd

m(x)dx = 1 (4.13)

We introduce the average cost function, of the kind shown in (4.9), as follows

J (x0, u(x),m(x)) := lim
T→∞

1
T
E


T̂

0

(
(u(x))T E u(x)

2 + V [m] (x)
)
dt


(4.14)

where

• E ∈ Rb×b is a symmetric and positive definite matrix;

• V [m] (x) is a functional that describes the part of the cost function
depending on the population distribution m(x).

In this work we define the functional V [m](x) as

V [m](x) = q(x(t))− d(x) ln (m(x(t)))

where

• q(x) : Rd 7−→ R is a smooth function expressed as q(x) = xTQ(x)x for
each x ∈ Rd;
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• Q(x) : Rd 7−→ Rd×d is a positive semi-definite smooth function, in other
word it is a function such that Q(x) ≥ 0 for each x ∈ Rd;

• d(x) : Rd 7−→ R is a smooth function such that d(x) > 0 for each
x ∈ Rd.

Remark 4.7. The cost function that we have introduced aims to minimize the
norm of the state x(t) and enforces the fact that each player has the same
state value. Indeed Q(x) is positive definite and hence it penalizes states
with a large norm. Then the term − ln (m(x(t))) is used, loosely speaking,
in order to force the state to avoid zones with small density of players and
to move into denser areas. In other words, by minimizing − ln (m(x(t))), we
are choosing states x̂ such that m(x̂) is large, namely states such that it is
very probable to find another player with a similar value of the state.

In summary, the proposed mean field game problem is described by the
following system

ẋ = f(x) + g(x)u(t) + σẆ x(0) = x0

J (x0, u(x),m(x)) := limT→∞
1
T
E
[´ T

0

(
(u(x(t)))TE u(x(t))

2 + V [m] (x(t))
)
dt
]

u(x) = arg minu(x)∈Ux (J (x0, u(x),m(x)))´
Rdm(x)dx = 1

(4.15)
and we want to find, if it exists, a pair (ū(x), m̄(x)) that solves it. As we are
in the stationary case such pair (ū(x), m̄(x)), as it is shown in [16], is also
such that

E
(

(ū(x̄(t1)))TE ū(x̄(t1))
2 + V [m] (x̄(t1))

)
≥

E
(

(ū(x̄(t2)))TE ū(x̄(t2))
2 + V [m] (x̄(t2))

) (4.16)

for all 0 < t1 < t2 where x̄(t) is the solution of (4.12) corresponding to the
input ū(x) and to the initial condition x0.

4.4.2 Hamiltonian Computation

As we explained in the previous section, in order to define the HJB and the
FPK equations that allow to find the optimal u(t) and m(x), it is necessary
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to compute the Hamiltonian function. The latter, according to the definition
(2.9), is computed as follows

H(x, p,m) := inf
u∈Ux

{
+uT E2 u+ V [m](x) + p (f(x) + g(x)u)

}
(4.17)

where p ∈ R1×d is a row vector which plays the role of the independent
variable. Noting that some terms do not depend on u the previous expression
becomes

H(x, p,m) = +pf(x) + V [m](x) + inf
u∈Ux

{
+uT E2 u+ pg(x)u

}

Under the assumption that −uT H2 u+pg(x)u is convex in u and that it admits
a minimum, such minimum can be found calculating the first derivative of
−uT H2 u+ pg(x)u as follows

∂
(
+uT H2 u+ pg(x)u

)
∂u

= +uTE + pg(x) = 0

Hence the minimum umin is

uTmin = −pg(x)E−1 ⇒ umin = −E−1gT (x)pT (4.18)

By substituting the computed umin in the equation (4.17) we obtain

H(x, p,m) = +p f(x) + V [m](x) + 1
2pg(x)E−1EE−1gT (x)pT

−pg(x)E−1gT (x)pT

= +p f(x) + V [m](x)− 1
2pg(x)E−1gT (x)pT (4.19)

4.4.3 HJB and FPK Equations

According to what we have explained in Section 4.3, the problem (4.15) can
be solved considering the system made coupling an HJB equation with a
FPK equation. Such equations are given by (4.7) where the first equation
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is substituted by (4.11) because we are considering an average cost function.
In other words the system of PDEs that has to be solved is the following one −tr(νvxx(x)) +H(x, vx(x),m) + λ = 0

−tr(νmxx(x))− div
(
∂H(x,vx(x),m)

∂p
m(x)

)
= 0

(4.20)

The partial derivative of the Hamiltonian function H(x, p,m) (4.19) is

∂H(x, p,m)
∂p

= fT (x)− pg(x)E−1gT (x) (4.21)

Then, by substituting (4.21) and (4.19) in (4.20) and by dropping the de-
pendence on the state x, we have −tr(νvxx) + vx f − 1

2vxgE
−1gTvTx + q − d ln (m) + λ = 0

−tr(νmxx)− div
(
+m fT −m vxgE

−1gT
)

= 0
(4.22)

and we have to find the triple (m(x), v(x), λ). It is also known from the
optimal control theory in Chapter 2 that, given v(x), the optimal feedback
control uopt(x) is given by (4.18) namely

uopt(x) = −E−1gT (x)vx(x)T (4.23)

Moreover, according to [45], in the stationary case the constant λ is such
that

λ = inf
x0∈Rd

J (x0, uopt(x)) (4.24)

= inf
x0∈Rd

lim
T→∞

1
T
E


T̂

0

(
(uopt(x))T E uopt(x)

2 + V [m] (x(t))
)
dt

(4.25)
Remark 4.8. We note that, since the term −d(x) ln (m(x(t))) in V [m] (x(t))
is negative, λ may be negative.

In general (4.22) is easily solvable only in a very small number of cases studied
for instance in [4] and [6]. One of them, namely the linear-quadratic case,
will be dealt with in the following section. Moreover we will define three
problems, different from this one, that will be used to explain what we mean
by local approximate dynamic solution of (4.15).
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4.4.4 Linear-Quadratic Case

An explicit solution (m(x), v(x), λ) of the system (4.22) and consequently of
the mean field game (4.15) has been computed only in the linear-quadratic
case (see [4]). The procedure to compute the optimum in this specific case is
briefly provided because it will be helpful to understand the approach used
in the following.
For the linear-quadratic problem we have that
F (x) ≡ A ∈ Rd×d

g(x) ≡ B ∈ Rd×b

Q(x) ≡ Q ∈ Rd×d

d(x) ≡ d ∈ R

The dynamics (4.12) becomes

ẋ = Ax+Bu(t) + σẆ (4.26)

and, similarly, the cost function (4.14) becomes

J (x0, u,m) := lim
T→∞

1
T
E


T̂

0

(
u(x)TE u(x)

2 + xTQx− d ln (m(x))
)
dt


(4.27)

So, the coupled HJB and FPK equations are −tr(νvxx) + vx Ax− 1
2vxBE

−1BTvTx + λ = −xTQ x+ d ln (m)
−tr(νmxx)− div

(
+m xTA−m vxBE

−1BT
)

= 0
(4.28)

Theorem 4.9. [4]A solution (m(x), v(x), λ) of (4.28) always exists and it is
expressed as

v(x) = 1
2x

TPx (4.29)

m(x) = 1(√
2π
)d

(det(G))−
1
2
e−

1
2x
TGx = κe−

1
2x
TGx ∼ N

(
0, G−1

)
(4.30)
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λ = tr (Pν) + d ln k (4.31)

where P,G ∈ Rd×d are symmetric, G is positive definite and they solve the
system PBE−1BT − A+Gν = 0

−PBE−1BTP + ATP + PA+ 2Q+ dG = 0
(4.32)

Hence, the optimal control is expressed as

uopt(x) = −E−1BTPx

Proof. A brief proof of the correctness of the solution is provided. Compute
first vx and mx exploiting the derivation rules (A.2) and (A.3) available in
Appendix A as follows

vx(x) = xTP

mx(x) = −m(x)
(
xTG

)
Exploiting the property of the trace operator (A.10) available in Appendix
A and substituting (4.30) in the second equation of (4.28), namely the FPK
equation, we have

0 = −tr(νmxx)− div
(
+m xTA−m vxBE

−1BT
)

= −div
(
mxν +m xTA−m vxBE

−1BT
)

= div
(
m
(
−xTGν + xTA− vxBE−1BT

))
Then, substituting the proposed value function (4.29) in the previous expres-
sion we obtain

0 = div
(
m
(
−xTGν + xTA− xTPBE−1BT

))
(4.33)

Exploiting the property of the divergence operator (A.1) explained in Ap-
pendix A and remembering that m(x) > 0 for each x ∈ Rd (and hence in
particular m(x) 6= 0) we have for each x ∈ Rd
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0 = div
(
m
(
−xTGν + xTA− xTPBE−1BT

))
=

(
−xTGν + xTA− xTPBE−1BT

)
mT
x

+m div
(
−xTGν + xTA− xTPBE−1BT

)
= −m

(
−xTGν + xTA− xTPBE−1BT

)
Gx

+m tr
(
−Gν + A− PBE−1BT

)
= xTGνGx− xTAGx+ xTPBE−1BTGx

+tr
(
−Gν + A− PBE−1BT

)

This implies

GνG− xTAG+ xTPBE−1BTG = 0
−Gν + A− PBE−1BT = 0

that can be equivalently rewritten as

+Gν − A+ PBE−1BT = 0

which is the first condition of (4.32). Substituting the proposed solutions
(4.29), (4.30) and (4.31) in the first equation of (4.28), namely the HJB
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equation, we obtain

0 = −tr(νvxx) + vx Ax−
1
2vxBE

−1BTvTx + λ

(4.34)
+xTQ x− d ln (m)

= −tr(νP ) + xTPAx− 1
2x

TPBE−1BTPx

+tr (Pν) + d ln k + xTQ x

−d ln k + 1
2dx

TGx

= xTPAx− 1
2x

TPBE−1BTPx+ xTQ x+ 1
2dx

TGx (4.35)

Finally note that, since xTPAx is a scalar term,

xTPAx = xTATPx

and in particular the following holds

xTPAx = 1
2x

TPAx+ 1
2x

TATPx

As a consequence, (4.35) can be rewritten as follows

0 = 1
2x

TPAx+ 1
2x

TATPx− 1
2x

TPBE−1BTPx

+xTQ x+ 1
2dx

TGx

Once again the last expression has to be true for each x ∈ Rd, which implies

PA+ ATP − PBE−1BTP + 2Q+ dG = 0

that is the second condition of (4.32).
All described steps are true for each x ∈ Rd and therefore the proposed
optimal solution is global.
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Remark 4.10. If we consider a linear-quadratic problem with d = 0 in the cost
function (4.27), the second equation of (4.32) becomes the Riccati equation
and it does not contain the term G. For this reason it can be solved in P .
This means that P and hence u(x) can be found without knowing the value
of G and thus of m(x). This fact can be explained noting that, when d = 0,
the cost function becomes

J (x0, u(x)) := lim
T→∞

1
T
E


T̂

0

(
(u(x))T E u(x)

2 + xTQx

)
dt


where no terms depending on m(x) appears.

4.4.5 Problem 1: Local optimum problem

Since (4.22) is in general very difficult to be solved in Rd we want to consider
a local optimal solution. For this reason we define a new problem that differs
from (4.22) only because the optimal control u(x) is defined as

u(x) = arg min
u(x)∈UΩ̄

(J (x0, u(x),m(x))) (4.36)

where
UΩ̄ =

{
u(x) : Ω̄ 7−→ Rb with u(x) smooth

}
and Ω̄ is a non-empty neighborhood of the origin. Such problem will be
referred to as local optimum problem or Problem 1 and it is fully described
by the following system



ẋ = f(x) + g(x)u(t) + σẆ x(0) = x0

J (x0, u(x),m(x)) := limT→∞
1
T
E
[´ T

0

(
(u(x(t)))TE u(x(t))

2 + V [m] (x(t))
)
dt
]

u(x) = arg minu(x)∈UΩ̄ (J (x0, u(x),m(x)))´
Rdm(x)dx = 1

(4.37)
The solution (u(x),m(x)) of (4.37) will be referred to as local solution of
(4.22).
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Remark 4.11. Note that we are interested only in the control u(x) that min-
imizes the cost function in Ω̄. For this reason, if a function ũ(x) : Rd 7−→ Rb

is such that (4.36) holds, then infinitely many functions ǔ(x) : Rd 7−→ Rb

such that (4.36) holds exist. Indeed a function ǔ(x) is such that (4.36) holds
if ǔ(x) = ũ(x) for each x ∈ Ω̄.

Remark 4.12. In this framework m(x) is still a probability density function
but it can be used to determine the probability that a player is in the state
x only if x ∈ Ω̄.

The local optimum problem can be solved finding the solution of the system
(4.22) in a neighborhood of the origin. In other words, we need to find a
vector

(
v(x),m(x), λ, Ω̄

)
such that (v(x),m(x), λ) solves (4.22) in the neigh-

borhood Ω̄. Then the optimal control u(x) for the local optimum problem is
still given by (4.23).

4.4.6 Problem 2: Dynamically Extended Problem

We define another mean field game problem that differs from Problem 1
because of the players’ dynamics. In particular we consider a new state
z(t) : [0,∞[ 7−→ R2d, that will be referred to as extended state and that is
defined as follows

z(t) =
(
xT (t), ξT (t)

)T

where x(t) : [0,∞[ 7−→ Rd, ξ(t) : [0,∞[ 7−→ Rd and ξ(t) is referred to as
dynamic extension. Moreover the dynamics of z(t) is
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ż =
(
ẋ

ξ̇

)
=



f1(x)
...

fd(x)
−

τ1(x, ξ)
...

τd(x, ξ)


+



g1,1(x) · · · g1,m(x)
... ...

gd,1(x) · · · gd,m(x)
− − −

0




u1(x)

...
um(x)

+

(4.38)

+



σ1,1 · · · σ1,d
... ...
σd,1 · · · σd,d
− − −

0




Ẇ1(t)

...
Ẇd(t)



where the dynamics of x(t) is described in (4.12) and

ξ̇ =
(
τ1(x, ξ) . . . τd(x, ξ)

)T
= τ(x, ξ) : R2d 7−→ Rd

is the dynamics of ξ(t) that can be freely chosen. Moreover the initial con-
dition of ξ(t) is ξ(0) = ξ0. The dynamics (4.38) can be more compactly
rewritten as

ż = fext(x, ξ) + gext(x)u(x) + σextẆ (t) z(0) = z0

where

• z =
(
x
ξ

)
∈ R2d and consequently ż =

(
ẋ

ξ̇

)
∈ R2d

• fext(x) =

 f(x)
−−
τ(x, ξ)

 ∈ R2d

• gext(x) =

 g(x)
−−
0

 ∈ R2d×b
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• σext =

 σ
−−
0

 ∈ R2d×d

• z0 =
(
x0
ξ0

)
∈ R2d

On the contrary the cost function is not linked to the dynamic extension
therefore it is still (4.14). The population density function is consequently
defined as mext(x, ξ) : R2d 7−→ R and the neighborhood of the origin where
we want to solve the problem is Ω̄ext ⊂ R2d.

This problem will be referred to as dynamically extended problem or Problem
2 and it is fully described by the following system



ż = fext(x, ξ) + gext(x)u(x) + σextẆ (t) z(0) = z0

J (x0, ξ0, u(x, ξ)) := limT→∞
1
T
E
[´ T

0

(
(u(x,ξ))TE u(x,ξ)

2 + V [m] (x, ξ)
)
dt
]

u(x, ξ) = arg minu(x,ξ)∈UΩ̄ext
(J (x0, u(x)))´

R2dmext(x, ξ)dx dξ = 1
(4.39)

The solution (u(x, ξ),m(x, ξ), τ(x, ξ)) of (4.39) will be referred to as dy-
namic local solution of (4.22).

In order to find the solution of the dynamically extended problem (4.39) we
consider the corresponding HJB FPK PDE system. We also remark the fact
that the extended value function vext(x, ξ) : R2d 7−→ R is now defined as

vext(x, ξ) = inf
u(x,ξ)∈UΩ̄ext

J (x0, ξ0, u(x, ξ))

Nevertheless, in order to simplify the notation, we will use vext(x, ξ) = v(x, ξ),
mext(x, ξ) = m(x, ξ) and Ω̄ext = Ω̄. The derivatives of v(x, ξ) and m(x, ξ)
are

vz(z) = ∂v
∂z

=
(
∂v
∂x1
· · · ∂v

∂xd
, ∂v
∂ξ1
· · · ∂v

∂ξd

)
= (vx(x, ξ), vξ(x, ξ)) ∈ R2d

mz(z) = ∂m
∂z

=
(
∂m
∂x1
· · · ∂m

∂xd
, ∂m
∂ξ1
· · · ∂m

∂ξd

)
= (mx(x, ξ),mξ(x, ξ)) ∈ R2d
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vzz(z) = ∂2v
∂z2 =



∂2v
∂x2

1
· · · ∂2v

∂x1xd
| ∂2v

∂x1ξ1
· · · ∂2v

∂x1ξd
... . . . ... | ... . . . ...
∂2v
∂xdx1

· · · ∂2v
∂x2
d
| ∂2v

∂xdξ1
· · · ∂2v

∂xdξd

−− −− −− + −− −− −−
∂2v
∂ξ1x1

· · · ∂2v
∂ξ1xd

| ∂2v
∂ξ2

1
· · · ∂2v

∂ξ1ξd
... . . . ... | ... . . . ...
∂2v
∂ξdx1

· · · ∂2v
∂ξdxd

| ∂2v
∂ξdξ1

· · · ∂2v
∂ξ2
d


=

 vxx | vxξ
−− + −−
vξx | vξξ



mzz(z) = ∂2m
∂z2 =



∂2m
∂x2

1
· · · ∂2m

∂x1xd
| ∂2m

∂x1ξ1
· · · ∂2m

∂x1ξd
... . . . ... | ... . . . ...

∂2m
∂xdx1

· · · ∂2m
∂x2
d
| ∂2m

∂xdξ1
· · · ∂2m

∂xdξd

−− −− −− + −− −− −−
∂2m
∂ξ1x1

· · · ∂2m
∂ξ1xd

| ∂2m
∂ξ2

1
· · · ∂2m

∂ξ1ξd
... . . . ... | ... . . . ...

∂2m
∂ξdx1

· · · ∂2m
∂ξdxd

| ∂2m
∂ξdξ1

· · · ∂2m
∂ξ2
d


=

 mxx | mxξ

−− + −−
mξx | mξξ



where vzz(z),mzz(z) ∈ R2d×2d. The HJB FPK PDE system for the extended
problem, where the dependencies of state z are neglected, is the following

−tr(νextvzz) + vz fext − 1
2vzgextE

−1gTextv
T
z + λ =

−q(x) + tr
(
C(x) (V ar(m))−1

)
+ d ln (m)

−tr(νextmzz)− div
(
+m fext −m vzgextE

−1gText
)

= 0

(4.40)

where

νext = σextσText
2 = 1

2

 σ
−−
0


 σ
−−
0


T

= 1
2

 σσT | 0
−− | −−
0 | 0

 =

 ν | 0
−− | −−
0 | 0


Note that

tr(νextvzz) = tr


 ν | 0
−− | −−
0 | 0


 vxx | vxξ
−− + −−
vξx | vξξ




= tr

 νvxx | νvxξ
−− + −−
0 | 0

 = tr(νvxx)
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vz fext =
(
vx | vξ

) f
−−
ξ̇

 = vxf + vξ ξ̇

vzgextE
−1gTextv

T
z =

(
vx | vξ

) g
−−
0

E−1

 g
−−
0


T (

vx | vξ
)T

= vxgE
−1gTvTx

Finally, (4.40) can be rewritten as

−tr(νvxx) + vx f(x) + vξ ξ̇ − 1
2vxgE

−1gTvTx + λ =
−q(x) + d ln (m)

−tr(νmxx)− div
(
+m

(
fT | ξ̇T

)
−m vxgE

−1gT
)

= 0

(4.41)

In this extended mean field game a solution of the local optimum problem
is expressed as

(
τ(x, ξ),m(x, ξ), v(x, ξ), λ, Ω̄

)
where Ω̄ ⊆ R2d is the neigh-

borhood of the origin where (τ(x, ξ),m(x, ξ), v(x, ξ), λ) solves (4.40). The
optimal control for the extended mean field game is given by

uopt(x, ξ) = −E−1gT (x)vx(x, ξ)T (4.42)

We note that in this case we have a sort of new degree of freedom because
we can freely choose ξ̇ = τ(x, ξ) and we may use it to make it easier to
solve (4.41). However (4.40) is still very difficult or impossible to solve in the
general case.

4.4.7 Problem 3: Approximate Problem

In order to find an easier way to compute a solution for the Problem 2 without
solving PDEs, we introduce a new class of problems. The problems in this
class differ from Problem 2 because they have a different cost function and
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a different noise contribution. Firstly, we consider a dynamics similar to the
one in (4.38) but with a smaller noise contribution namely

(
ẋ

ξ̇

)
=



f1(x)
...

fd(x)
−

τ1(x, ξ)
...

τd(x, ξ)


+



g1,1(x) · · · g1,m(x)
... ...

gd,1(x) · · · gd,m(x)
− − −

0




u1(t, x)

...
um(t, x)



(4.43)

+ 1
α



σ1,1 · · · σ1,d
... ...
σd,1 · · · σd,d
− − −

0




W1(t)

...
Wd(t)



where α ≥ 1 is a constant. Obviously, if α = 1, (4.43) is equal to the
dynamics of Problem 2.

Now we consider the following cost function

J (x0, ξ0, u) := lim
T→∞

1
T
E


T̂

0

(
u(x, ξ)TE(x) u(x, ξ)

2 + V [m] (x, ξ) + Υ
)
dt


(4.44)

where Υ ≥ 0 is a constant. If Υ = 0 (4.44) is equal to cost function of the
Problem 2.

Each problem of the previously described class is identified by the pair of
constants (α,Υ). It will be referred to as approximate problem or Problem
3 and it is fully described by the following system
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ż = fext(x, ξ) + gext(x)u(x) + 1
α
σextẆ (t) z(0) = z0

J (x0, ξ0, u(x, ξ)) := limT→∞
1
T
E
[´ T

0

(
(u(x,ξ))TE u(x,ξ)

2 + V [m] (x, ξ) + Υ
)
dt
]

u(x, ξ) = arg minu(x,ξ)∈UΩ̄ext
(J (x0, u(x)))´

R2dmext(x, ξ)dx dξ = 1
(4.45)

The solution (u(x, ξ),m(x, ξ), τ(x, ξ)) of one problem of the class (4.39) will
be referred to as local dynamic approximate solution of (4.22).
The system of an HJB and a FPK equation corresponding to the class of
problems (4.45) is given by

−tr (νnewvxx) + vx f + vξ ξ̇ − 1
2vxgE

−1gTvTx + λ =
−Υ − q + d ln (m)

−tr(νnewmxx)− div
(
+m

(
fT | ξ̇T

)
−m vxgE

−1gT
)

= 0

(4.46)

where νnew ∈ Rd×d is computed as follows νnew | 0
−− + −−
0 | 0

 = 1
2


 σ
−
0

− α− 1
α

 σ
−
0




 σ
−
0

− α− 1
α

 σ
−
0



T

= 1
α2


1
2σσ

T | 0
−− + −−
0 | 0



=


1
2σσ

T | 0
−− + −−
0 | 0

− α2 − 1
α2


1
2σσ

T | 0
−− + −−
0 | 0


Therefore

νnew =
(

1− α2 − 1
α2

)(1
2σσ

T
)

= ν − α2 − 1
α2 ν = ν − νgap(α) (4.47)
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where
νgap(α) = α2 − 1

α2 ν

hence νgap(α) ∈ Rd×d is a positive definite matrix because ν is positive defi-
nite.
Substituting (4.47) in (4.46) we have

−tr ((ν − νgap(α)) vxx) + vx f + vξ ξ̇ − 1
2vxgE

−1gTvTx + λ =
−Υ − q + d ln (m)

−tr ((ν − νgap(α))mxx)− div
(
+m

(
fT | ξ̇T

)
−m vxgE

−1gT
)

= 0

Separating the terms depending on Υ and α we obtain

−tr (νvxx) + vx f + vξ ξ̇ − 1
2vxgE

−1gTvTx + λ+ q − d ln (m)
= −Υ − tr (νgap(α)vxx)

−tr (νmxx)− div
(
+m

(
fT | ξ̇T

)
−m vxgE

−1gT
)

= −tr (νgap(α)mxx)
(4.48)

In order to make (4.48) easier to solve we need to introduce the following
two assumptions.
Assumption 1 tr (νmxx(0, 0)) ≤ 0. This will be a steady assumption from
now on.
Remark 4.13. If Assumption 1 holds, tr (νgap(α)mxx(0, 0)) ≤ 0 because

tr (νgap(α)mxx) = α2 − 1
α2 tr (νmxx) ≤ 0

Remark 4.14. Note that Assumption 1 holds if we have a bell shaped pop-
ulation density function. Indeed, for example, Assumption 1 is verified if
the population density function is concave at (x, ξ) = (0, 0) because of the
properties of trace operator (A.6) as explained in Appendix A.

Assumption 2 There exists a neighborhood Ωass of the origin such that

0 ≤ −tr (νmxx)− div
(
+m

(
fT | ξ̇T

)
−m vxgE

−1gT
)
< −tr (νmxx)

(4.49)
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for each (x, ξ) ∈ Ωass ⊆ R2d. This will be a steady assumption from now on.
If Assumption 1 holds, since all functions are smooth, such neighborhood
Ωass always exists.
Remark 4.15. A necessary condition for Assumption 2 to hold is that
tr (νmxx) ≤ 0 for all (x, ξ) ∈ Ωass. For example, in the one-dimensional
case, it means that we can find only population density functions that are
concave in a neighborhood of the origin.

If Assumptions 1 and 2 hold then solving a problem of the class (4.45) and
consequently one of the systems of PDEs (4.48) in a neighborhood of the ori-
gin Ω̄ ⊆ Ωass is equivalent to finding a vector

(
τ(x, ξ),m(x, ξ), v(x, ξ), λ, Ω̄

)
such that the following hold

−tr (νvxx) + vx f + vξ ξ̇ − 1
2vxgE

−1gTvTx + λ+ q − d ln (m) ≤ 0

−tr (νmxx)− div
(
+m

(
fT | ξ̇T

)
−m vxgE

−1gT
)
≥ 0

(4.50)
Indeed, if the solution

(
τ(x, ξ),m(x, ξ), v(x, ξ), λ, Ω̄

)
found from (4.50) is

such that
−tr (νvxx) + vx f + vξ ξ̇ − 1

2vxgE
−1gTvTx + λ+ q − d ln (m) = ∆1

−tr (νmxx)− div
(
+m

(
fT | ξ̇T

)
−m vxgE

−1gT
)

= ∆2

where ∆1 ≤ 0 and 0 ≤ ∆2 < −tr (νmxx) because of Assumption 2, then
we have that

(
τ(x, ξ),m(x, ξ), v(x, ξ), λ, Ω̄

)
solves the problem of the class

(4.48) corresponding to

a =

√√√√ tr (νmxx)
∆2 + tr (νmxx)

Υ = −∆1 + ∆2
tr (νvxx)
tr (νmxx)

Moreover the solution of the corresponding approximate problem is
(τ(x, ξ),m(x, ξ), u(x, ξ)) where u(x, ξ) is given by (4.42).

4.4.8 Procedure Summary

To sum up, the method that we propose to solve the stationary mean field
game (4.15) and to make each player reach the equilibrium consists of
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1. Computing the local dynamic approximate solution
(τ̂(x, ξ), m̂(x, ξ), û(x, ξ)) of (4.15)

2. Constructing the extended dynamics (4.38) of the mean field game
(4.15) with ξ̇ = τ̂(x, ξ)

3. Using û(x, ξ) as a control function for each player of the mean field
game (4.39)

If the distribution of players’ state has the same form as the probability den-
sity function m̂(x, ξ) and if (4.16) holds we can say that the solution is good.
Further analysis would be necessary to understand the accuracy of the so-
lution (τ(x, ξ),m(x, ξ), u(x, ξ)) without performing simulations. We simply
note that, obviously, a local dynamic approximate solution is preferable to
another one if the corresponding validity neighborhood Ω̄ is larger. A numer-
ical example that shows the effectiveness of the local dynamic approximate
solution will be provided in Section 4.5.
According to what we have shown, in order to compute a dynamic approx-
imate local solution of (4.15) it is sufficient to solve (4.50). Nevertheless,
(4.50) is a system of partial differential inequalities (PDIs) therefore it may
still be difficult to be solved. For this reason, in the following chapter, we
propose a way to solve it without dealing with PDIs.

4.4.9 Algebraic Mean Field Game Solution

In order to find an equilibrium for (4.48) solving only a system of algebraic
equations, we introduce the following definition.

Definition 4.16. (Algebraic Mean Field Game solution) An algebraic
mean field game solution (algebraic MFGS) in Ωalgof the problem (4.15) is
defined as the pair (P (·), G(·)) such that

• P (·) : Rd 7−→ Rd×d , G(·) : Rd 7−→ Rd×d

• G(x) is such that
´
Rd exp

(
−1

2x
TG(x)x

)
dx <∞

• P (·) and G(·) are symmetric i.e. P (·) = P (·)T and G(·) = G(·)T
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• P (·) and G(·) are C2 mappings

• the following holds for all x ∈ Ωalg, where Ωalg is a neighborhood of
the origin, and for some mappings Σ1, Σ2 : Rd 7−→ Rd×d such that
Σ2(x) ≥ 0 and Σ1(x) ≥ 0 for all x ∈ Ωalg

−xTP (x)gE−1gTG(x)x+ 1
2x

TF (x)TG(x)x+
+1

2x
TG(x)F (x)x− xTG(x)νG(x)x+

+tr
(
P (x)gE−1gT

)
+
(
xTP (x)

)
∇̄x

(
g(x)E−1g(x)T

)
+

−tr
(
+F (x)T

)
− xT ∇̄x (F (x)) + tr (G(x)ν) +

= +xTΣ2(x)x

−1
2P (x)gE−1gTP (x) + 1

2F (x)TP (x)
+1

2P (x)F (x) +Q+ 1
2dG(x)

+Σ1(x) = 0

(4.51)

Remark 4.17. Given a problem (4.15), a mean field game solution may not
exist because (4.51) may not be solvable.
Remark 4.18. Both P (x) and G(x) are symmetric matrices. Therefore, in
order to compute their value, we need to find 2

(
d2−d

2 + d
)

= d2 +d functions
depending on x. However, the first equation of (4.51) is one-dimensional and
the second one is d-dimensional therefore we have only d+ 1 relations. This
fact clearly shows that we do not find only one particular solution but a set
of solutions for the Problem 3. The additional degrees of freedom may be
used to find a pair (P (·), G(·)) that makes the set Ωalg as large as possible.

4.4.10 Proposed solution

Exploiting the previously defined concept of algebraic MFGS we want to pro-
vide a vector

(
τ(x, ξ),m(x, ξ), v(x, ξ), λ, Ω̄

)
that allows to solve the system

of PDIs (4.48).
Theorem 4.19. Given an algebraic MFGS (P (·), G(·)) of the problem (4.15)
in Ωalg, then a solution

(
τ(x, ξ),m(x, ξ), v(x, ξ), λ, Ω̄

)
of the system of PDIs

(4.48) is the following

v(x, ξ) = 1
2x

TP (ξ)x+ 1
2 (x− ξ)T R (x− ξ) (4.52)
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m(x, ξ) = κ exp
(
−1

2x
TG(ξ)x− 1

2 (x− ξ)T S (x− ξ)
)

(4.53)

ξ̇ = τ(x, ξ) = −k
(
vξ(x, ξ)T + mξ(x, ξ)T

m(x, ξ)

)
(4.54)

λ = − max
Ω2

(−tr (P (x)ν)− d ln (κ)) (4.55)

Ω̄ = Ω1 ∩ Ω2 ∩ Ωalg,ext (4.56)
where

• R, S ∈ Rd×d are symmetric positive definite matrices which can be
arbitrarily chosen in such a way that

tr (R) > tr (S)

• κ ∈ R is the constant such thatˆ

R2d

κ exp
(
−1

2x
TG(ξ)x− 1

2 (x− ξ)T S (x− ξ)
)
dx dξ = 1

that always exists because of the assumptions on G(·)

• k > 0 is a constant that can be arbitrarily chosen

• Ω2 is a neighborhood of the origin where the following inequality holds

−tr (νmxx)− div
(
+m

(
fT | ξ̇T

)
−m vxgE

−1gT
)
≥ 0

• Ω1 is a neighborhood of the origin where the following inequality holds

−tr(νvxx) + vx f(x) + vξ ξ̇ −
1
2vxg(x)E−1gT (x)vTx + V [m](x) + λ ≤ 0

• Ωalg,ext is the extension into space R2d of Ωalg namely

Ωalg,ext = Ωalg × Rd
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Proof. A complete and detailed proof of the theorem that is one of the main
results of this work is provided in the following. The proof consist on the
substitution of the proposed solution

(
τ(x, ξ),m(x, ξ), v(x, ξ), λ, Ω̄

)
in the

PDIs (4.50) and on their evaluation on the neighborhood of the origin Ω̄.
Moreover it exploits some properties of the divergence operator and of trace
operator.

Consider the algebraic MFGS (P (·), G(·)). From P (ξ) and G(ξ), we can also
automatically define the functions Φ(x, ξ), Φ̄(x, ξ), Λ(x, ξ) and Λ̄(x, ξ) that
take the following expressions

xT (P (x)− P (ξ)) = (x− ξ)T Φ(x, ξ)T

P (x)− P (ξ) = Φ̄(x, ξ)T

xT (G(x)−G(ξ)) = (x− ξ)T Λ(x, ξ)T

G(x)−G(ξ) = Λ̄(x, ξ)T

The derivatives of (4.52) and (4.53) are computed as follows

vx = xTP (ξ) + (x− ξ)T R = xTP (x) + (x− ξ)T (R− Φ(x, ξ))T

vxx = P (ξ) +R = P (x) +R− Φ̄(x, ξ)T

vξ = xT
∂( 1

2P (ξ)x)
∂ξ

− (x− ξ)T R = xTΨ(x, ξ)− (x− ξ)T R

mx = −m(x, ξ)
(
xTG(ξ) + (x− ξ)T S

)
= −m(x, ξ)

(
xTG(x) + (x− ξ)T (S − Λ(x, ξ))T

)
mxx = −m(x, ξ) (G(ξ) + S)−m(x, ξ)

(
xTG(ξ) + (x− ξ)T S

) (
xTG(ξ) + (x− ξ)T S

)T
= −m(x, ξ)

(
G(x) + S − Λ̄(x, ξ)T

)
+

−m(x, ξ)
(
xTG(x) + (x− ξ)T (S − Λ(x, ξ))T

) (
xTG(x) + (x− ξ)T (S − Λ(x, ξ))T

)T
mξ = −m(x, ξ)

(
xT

∂( 1
2G(ξ)x)
∂ξ

− (x− ξ)T S
)

= −m(x, ξ)
(
xTΞ(x, ξ)− (x− ξ)T S

)
where Ψ(x, ξ) = ∂( 1

2P (ξ)x)
∂ξ

and Ξ(x, ξ) = ∂( 1
2G(ξ)x)
∂ξ

.

Some helpful divergence operator properties, that will be used in the proof,
are recall in Appendix A.

FPK equation
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In order to make the proof clearer, dependencies on x will be neglected from
now on. The second equation of (4.50) reads

−tr (νmxx)− div
(
+m

(
fT | ξ̇T

)
−m vxgE

−1gT
)
≥ 0

Using the definition of divergence, we obtain

div
(
m
(
fT | ξ̇T

))
= ∂mf1

∂x1
+ · · ·+ ∂mfd

∂xd
+ ∂mξ̇1

∂ξ1
+ · · ·+ ∂mξ̇d

∂ξd

= divx
(
mfT

)
+ divξ

(
m ξ̇T

)
where divx

(
mfT

)
= ∂mf1

∂x1
+ · · ·+ ∂mfd

∂xd
and divξ

(
m ξ̇T

)
= ∂mξ̇1

∂ξ1
+ · · ·+ ∂mξ̇d

∂ξd
.

Consequently (4.50) can be written as

−tr(νmxx)− divx
(
+m fT −m vxgE

−1gT
)
− divξ

(
+m ξ̇T

)
≥ 0

Exploiting (A.10), we have

−divx
(
mxν +m fT −m vxgE

−1gT
)
− divξ

(
m ξ̇T

)
≥ 0

Then, substituting (4.53) in the previous expression, we obtain

divx
[
m
((
xTG(x) + (x− ξ)T (S − Λ(x, ξ))T

)
ν + vxgE

−1gT − fT
)]

+

divξ
(
−m ξ̇T

)
≥ 0

Finally, substituting (4.52) in the previous expression, the above expression
becomes

divx
[
m
((
xTP (x) + (x− ξ)T (R− Φ(x, ξ))T

)
gE−1gT − fT

)]
+

+divx
[
m
(
xTG(x) + (x− ξ)T (S − Λ(x, ξ))T

)
ν
]

+ divξ
(
−m ξ̇T

)
≥ 0

Now (A.8) can be used in order to obtain the following expression

divx
[((

xTP (x) + (x− ξ)T (R− Φ(x, ξ))T
)
gE−1gT − fT

)]
m+

+divx
[(
xTG(x) + (x− ξ)T (S − Λ(x, ξ))T

)
ν
]
m+ divξ

(
−ξ̇T

)
m+

+
((
xTP (x) + (x− ξ)T (R− Φ(x, ξ))T

)
gE−1gT − fT

)
mT
x+

+
(
xTG(x) + (x− ξ)T (S − Λ(x, ξ))T

)
ν mT

x − ξ̇TmT
ξ ≥ 0
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In order to simplify the above expression, we define the variable T (x, ξ, k)
as

T (x, ξ, k) := divx
[((

xTP (x) + (x− ξ)T (R− Φ(x, ξ))T
)
gE−1gT − fT

)]
+divx

[(
xTG(x) + (x− ξ)T (S − Λ(x, ξ))T

)
ν
]

+ divξ
(
−ξ̇T

)
Then, using (A.10) again and remembering that f(x) = F (x)x and that

ξ̇ = −k
(
vξ(x, ξ)T + mξ(x, ξ)T

m(x, ξ)

)
= −k

(
Ψ(x, ξ)Tx−R (x− ξ)

)
+ k

(
Ξ(x, ξ)Tx− S (x− ξ)

)
(4.57)

we can write

T (x, ξ, k) = tr
((
P (x) +R− Φ̄(x, ξ)T

)
gE−1gT

)
+

+
(
xTP (x) + (x− ξ)T (R− Φ(x, ξ))T

)
∇̄x

(
g(x)E−1g(x)T

)
+

−tr
(
+F (x)T

)
− xT ∇̄x (F (x)) + tr

((
G(x) + S − Λ̄(x, ξ)T

)
ν
)

+

+k tr
(
xT
∂Ψ(x, ξ)
∂ξ

+R

)
− k tr

(
xT
∂Ξ(x, ξ)

∂ξ
+ S

)

The expression that we are studying becomes((
xTP (x) + (x− ξ)T (R− Φ(x, ξ))T

)
gE−1gT − fT

)
mT
x+

+
(
xTG(x) + (x− ξ)T (S − Λ(x, ξ))T

)
ν mT

x − ξ̇TmT
ξ +m T (x, ξ, k) ≥ 0

Therefore, substituting the expressions for mx and mξ and recalling again
that f(x) = F (x)x and that the expression of ξ̇ is given by (4.57), we obtain

−
(
xTP (x) + (x− ξ)T (R− Φ(x, ξ))T

)
gE−1gT+

+xTF (x)T (G(x)x+ (S − Λ(x, ξ)) (x− ξ))m (G(x)x+ (S − Λ(x, ξ)) (x− ξ))m+

−
(
xTG(x) + (x− ξ)T (S − Λ(x, ξ))T

)
ν (G(x)x+ (S − Λ(x, ξ)) (x− ξ))m+

−k
(
xTΨ(x, ξ)− (x− ξ)T R

) (
Ξ(x, ξ)Tx− S (x− ξ)

)
m

+k
(
xTΞ(x, ξ)− (x− ξ)T S

) (
Ξ(x, ξ)Tx− S (x− ξ)

)
m+m T (x, ξ, k) ≥ 0
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Note that, since m(x, ξ) > 0 for all (x, ξ), we can divide the previous expres-
sion by m

−xTP (x)gE−1gT (S − Λ(x, ξ)) (x− ξ)− (x− ξ)T (R− Φ(x, ξ))T gE−1gTG(x)x+

−xTP (x)gE−1gTG(x)x− (x− ξ)T (R− Φ(x, ξ))T gE−1gT (S − Λ(x, ξ)) (x− ξ) +

+xTF (x)T (G(x)x+ (S − Λ(x, ξ)) (x− ξ)) +

−xTG(x)νG(x)x− (x− ξ)T (S − Λ(x, ξ))T ν (S − Λ(x, ξ)) (x− ξ) +

−xTG(x)ν (S − Λ(x, ξ)) (x− ξ)− (x− ξ)T (S − Λ(x, ξ))T νG(x)x+

−kxTΨ(x, ξ)Ξ(x, ξ)Tx− k (x− ξ)T RS (x− ξ) +

+kxTΨ(x, ξ)S (x− ξ) + k (x− ξ)T RΞ(x, ξ)Tx

+kxTΞ(x, ξ)Ξ(x, ξ)Tx+ k (x− ξ)T SS (x− ξ) +

−kxTΞ(x, ξ)S (x− ξ)− k (x− ξ)T SΞ(x, ξ)Tx+ T (x, ξ, k) ≥ 0
(4.58)

As xTV1V 2x is scalar, the following expressions hold

xTV T
2 V

T
1 x = xTV1V 2x

xTV1V 2x = 1
2x

TV1V 2x+ 1
2x

TV T
2 V

T
1 x (4.59)

Exploiting (4.59), the inequality (4.58) can be written in the following form

(
x

x− ξ

)T [(
M II

1,1 M II
1,2

M II
2,1 M II

2,2

)
+ k

(
N II

1,1 N II
1,2

N II
2,1 N II

2,2

)
− k

(
D1,1 D1,2
D2,1 D2,2

)](
x

x− ξ

)
+

+T (x, ξ, k) ≥ 0
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where

M II
1,1 = −P (x)gE−1gTG(x) + 1

2F (x)TG(x) +

+1
2G(x)F (x)−G(x)νG(x)

M II
1,2 = −1

2P (x)gE−1gT (S − Λ(x, ξ))−G(x)ν (S − Λ(x, ξ))

−1
2G(x)gE−1gT (R− Φ(x, ξ)) + 1

2F (x)T (S − Λ(x, ξ))

M II
2,1 =

(
M II

1,2

)T
M II

2,2 = − (R− Φ(x, ξ))T gE−1gT (S − Λ(x, ξ)) +
− (S − Λ(x, ξ))T ν (S − Λ(x, ξ))

DII
1,1 = +Ψ(x, ξ)Ξ(x, ξ)T

DII
1,2 = −1

2Ψ(x, ξ)S − 1
2Ξ(x, ξ)R

DII
2,1 =

(
DII

1,2

)T
DII

2,2 = +RS

N II
1,1 = +Ξ((x, ξ)Ξ(x, ξ)T

N II
1,2 = −Ξ(x, ξ)S

N II
2,1 =

(
N II

1,2

)T
N II

2,2 = SS
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Finally, remembering the Definition 4.16 of algebraic solution we obtain
(

x
x− ξ

)T [(
Σ2(x) M II

1,2
M II

2,1 M II
2,2

)
+ k

(
N II

1,1 N II
1,2

N II
2,1 N II

2,2

)
− k

(
D1,1 D1,2
D2,1 D2,2

)](
x

x− ξ

)
+

+tr
((
−Φ̄(x, ξ)T +R

)
gE−1gT

)
+ tr

((
(x− ξ)T (R− Φ(x, ξ))T

)
∇̄x

(
g(x)E−1g(x)T

))
+

+tr
((
−Λ̄(x, ξ)T + S

)
ν
)

+ k tr
(
xT ∂Ψ(x,ξ)

∂ξ
+R

)
− k tr

(
xT ∂Ξ(x,ξ)

∂ξ
+ S

)
≥ 0

(4.60)

Evaluate (4.60) at (x, ξ) = (0, 0) and note that, by the way they have been
defined, Φ̄(x, ξ)T = 0 and Λ̄(x, ξ)T = 0. Hence (4.60) evaluated at (x, ξ) =
(0, 0) reads

+tr
(
RgE−1gT

)
+ tr (Sν) + k (tr (R)− tr (S)) ≥ 0

whereR and gE−1gT are positive definite and hence tr
(
RgE−1gT

)
> 0. S

and ν are both positive definite and therefore, due to (A.6) , tr (Sν) > 0.
Finally, for each k ≥ 0, k (tr (R)− tr (S)) ≥ 0 because tr (R) > tr (S). It
follows that (4.60) is strictly greater than zero at (x, ξ) = (0, 0). Moreover,
noting that all functions in (4.60) are smooth, we deduce that a neighborhood
of the origin where the inequality (4.60) holds exists. It is precisely Ω2 ∩
Ωalg,ext.

HJB equation

The fist inequality of (4.50) is

−tr(νvxx) + vx f(x) + vξ ξ̇ −
1
2vxg(x)E−1gT (x)vTx + V [m](x) + λ ≤ 0

where V [m](x) reads

V [m](x) : = xTQ x+ d
1
2x

T
(
G(x)− Λ̄(x, ξ)T

)
x

−d ln (κ) + d
1
2 (x− ξ)T S (x− ξ)

Therefore, substituting (4.53) and (4.52) in the first inequality of (4.50), the
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first inequality of (4.50) can be written as

tr
(
−
(
P (x) +R− Φ̄(x, ξ)T

)
ν
)

+

+
(
xTP (x) + (x− ξ)T (R− Φ(x, ξ))T

)
F (x)x+

−1
2

(
xTP (x) + (x− ξ)T (R− Φ(x, ξ))T

)
gE−1gT

(
xTP (x) + (x− ξ)T (R− Φ(x, ξ))T

)T
+

−k
(
xTΨ(x, ξ)− (x− ξ)T R

) (
Ψ(x, ξ)Tx−R (x− ξ)

)
+

+k
(
xTΨ(x, ξ)− (x− ξ)T R

) (
Ξ(x, ξ)Tx− S (x− ξ)

)
+

+d1
2x

T
(
G(x)− Λ̄(x, ξ)T

)
x+ d1

2 (x− ξ)T S (x− ξ) +

−d ln (κ) + xTQ x+ λ ≤ 0
(4.61)

Finally (4.61) can be written in the following form

(
x

x− ξ

)T [(
M I

1,1 M I
1,2

M I
2,1 M I

2,2

)
− k

(
N I

1,1 N I
1,2

N I
2,1 N I

2,2

)
+ k

(
D1,1 D1,2
D2,1 D2,2

)](
x

x− ξ

)
+

+λ+ tr
(
−
(
P (x) +R− Φ̄(x, ξ)T

)
ν
)
− d ln (κ) ≤ 0
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where

M I
1,1 = −1

2P (x)gE−1gTP (x) + 1
2F (x)TP (x) +

+1
2P (x)F (x) +Q+ 1

2dG−
1
2dΛ̄(x, ξ)T

M I
1,2 = −1

2P (x)gE−1gT (R− Φ(x, ξ)) + 1
2F (x)T (R− Φ(x, ξ))

M I
2,1 =

(
M I

1,2

)T
M I

2,2 = −1
2 (R− Φ(x, ξ))T gE−1gT (R− Φ(x, ξ)) +

+ (S − Λ(x, ξ))T ν (S − Λ(x, ξ)) + 1
2dS

D1,1 = +Ψ(x, ξ)Ξ(x, ξ)T

D1,2 = −1
2Ψ(x, ξ)S − 1

2Ξ(x, ξ)R

D2,1 =
(
DII

1,2

)T
N I

1,1 = +Ψ(x, ξ)Ψ(x, ξ)T

N I
1,2 = −Ψ(x, ξ)R

N I
2,1 =

(
N I

1,2

)T
N I

2,2 = RR
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Therefore, we obtain(
x

x− ξ

)T [( −Σ1(x) M I
1,2

M I
2,1 M I

2,2

)
− k

(
N I

1,1 N I
1,2

N I
2,1 N I

2,2

)
+ k

(
D1,1 D1,2
D2,1 D2,2

)](
x

x− ξ

)
+

−tr
((
P (x)− Φ̄(x, ξ)T +R

)
ν
)
− 1

2dx
T Λ̄(x, ξ)Tx− d ln (κ) + λ ≤ 0

(4.62)
Evaluating (4.62) at (x, ξ) = (0, 0), noting that Φ̄(0, 0)T = Λ̄(0, 0)T = 0
and substituting the proposed expression of λ i.e. (4.55) into the above
expression, we have that (4.62) becomes

−max
Ω2

(−tr (P (x)ν)− d ln (κ))− tr (P (x)ν)− d ln (κ)− tr (Rν) ≤ 0

The above expression is always verified because R and ν are positive definite
and hence, by property (A.6), −tr (Rν) is strictly smaller than zero. Noting
that all mappings in (4.62) are smooth we deduce that there always exists
a neighborhood of the origin such that (4.62) holds and it is Ω1 ∩ Ωalg,ext.
Finally, the neighborhood where both the first and the second inequality of
(4.50) are verified is

Ω̄ = Ω1 ∩ Ω2 ∩ Ωalg,ext

Remark 4.20. Even if an explicit dependence of u(x, ξ) on m(x, ξ) does not
appear in (4.52), the two function are strictly related. Indeed remember that
P (x) was computed from (4.51) where it was coupled with G(x).
Remark 4.21. As Assumption 1 and 2 have to hold in a neighborhood of the
origin, it is easy to see that tr (νmxx) ≤ 0 is equal to

tr
(
ν
(
−m(x, ξ)

(
(G(ξ) + S) +

(
xTG(ξ) + (x− ξ)T S

) (
xTG(ξ) + (x− ξ)T S

)T)))
≤ 0

This expression, recalling that m(x, ξ) ≥ 0, can be rewritten as

−tr
(
ν
(

(G(ξ) + S) +
(
xTG(ξ) + (x− ξ)T S

) (
xTG(ξ) + (x− ξ)T S

)T))
≤ 0

Therefore it is always possible to choose an S such that tr (νmxx) ≤ 0 and,
in general, Assumption 1 and Assumption 2 hold. However, when the real
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(i.e. not approximate) solution mreal(x, ξ) does not satisfy Assumption 1
and Assumption 2, then our approximate solution either can not be found
because for example the the algebraic solution condition does not hold or is
not good because for instance

´
Ω̄mapp(x, ξ)� 1.

Remark 4.22. Note that in this proof the condition (4.51) of the algebraic
MFGS is used only because we imposed M I

1,1 and M II
1,1 to be zero at the

origin in (4.62) and (4.60). However, considering the results in [15], the
structure of the algebraic MFGS could be useful to prove that the local
dynamic approximate solution makes the dynamically extended mean field
game (4.40) stable in a neighborhood of the origin. Anyway this aspect is
not dealt with in this thesis and it may be the topic of further future works.

4.5 Numerical Example

4.5.1 Problem Description

In order to show the developed procedure we consider a simple numerical
example. Imagine a school of fish. Each fish does not care about each of the
other fish. Rather, it cares about how the fish nearby, as a mass, globally
move. Firstly assume that fish can move wherever they want on a line and
the absolute position of each fish on the line at instant t is indicated by
the state x(t) : [0,∞[ 7−→ R. Moreover each fish controls his velocity and it
depends on its own position and the position of the mass of the other fish.
In other words the control function is v(x,m, t) : R × [0,∞[×[0,∞[ 7−→ R.
We model the school as an infinite number of fish such that m(x, t) is the
probability density function that describes each fish position at instant t
and m0(x) is the initial given distribution. We also assume that all fish are
similar or, using the terminology of the mean field game theory, that each
player has the same dynamics. Moreover they move in order to avoid being
in dangerous positions or, in other words, minimizing the dangerousness of
their position. For this reasons we can apply the mean field game theory in
order to model this problem.

Based on what we have said, the dynamics of each fish is given by the fol-
lowing equation
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ẋ(t) = u(x, t) + 1
10Ẇ (t) x(0) = x0 (4.63)

where, according to the notation used in (4.12), we have

• the state dimension d = 1

• f(x) ≡ 0 and consequently F (x) ≡ 0. In a more general case f(x)
could be used to model the contribution of the sea current that moves
the fish even if his relative velocity, i.e. the control input, is absent

• g(x) ≡ 1 because we are assuming that each fish can control directly
its relative velocity

• u(x, t) = v(x,m) in the control input that, as we said, is the relative
velocity that each fish can independently choose

• x0 is the initial position of the considered fish and it is a realization of
the random variable that has m0(x) as probability density function

• W (t) is a Brownian motion and it is used to model the crowding.
Roughly speaking this terms models the fact that they are not in total
control of their trajectories because of the presence of the other fish

• σ = 1
10 that quantifies the contribution of the Brownian motion and

that is rather large because we are considering a large school of fish
where clashes may be very frequent

The cost function, that in this case is a danger index to minimized, is defined
as follows

J (x0, v(x)) := lim
T→∞

1
T
E


T̂

0

(
u2

2 − 100e−x2 ln (m)
)
dt

 (4.64)

where, according to the notation used in (4.14), we have

• Q(x) ≡ 0

• E = 1 because the term u2(x,m, t) models the fact that if a fish is
moving at high speed then he risks to run out of energy
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• d(x) = 100e−x2 because the term −100e−x2 ln (m(x(t))) is used to pro-
mote an high value of m(x, t) or, in other words, a situation where it
is very probable that another fish has the same state value of the con-
sidered fish. However, since we want to add some nonlinearities to the
cost function, we have used the function 100e−x2 , that has a maximum
in the origin, in order to penalize a small value of m(x̄, t) more if |x̄| is
large. It models the fact that the origin is considered a safer position
hence if a fish is close to the origin it is less important to be together
with the others

Note that, although we consider a scalar problem in this example, the tech-
nique proposed in this work allows to deal also with d dimensional state
space.
To sum up, if we assume the problem stationary, the motion of such school
of fish can be modeled by the following mean field game



ẋ(t) = u(x) + 1
10Ẇ (t) x(0) = x0

J (x0, u(x)) := limT→∞
1
T
E
[´ T

0

(
u2

2 − 100e−x2 ln (m)
)
dt
]

u(x) = arg minu(x)∈Ux J (x0, u(x))´
Rdm(x)dx = 1

(4.65)

Note also that, although the dynamics is linear, the problem is not trivial be-
cause the cost function has some not quadratic terms that make the optimal
control nonlinear on x.

4.5.2 Proposed Method Application

We want to use the proposed method to find a local dynamical approxi-
mate solution of (4.65).
According to the procedure proposed in Section 4.4, we first have to com-
pute a solution

(
τ(x, ξ),m(x, ξ), v(x, ξ), λ, Ω̄

)
of (4.50). The latter, in this

numerical example, reads
1

100vxx + vξ ξ̇ − 1
2v

2
x + λ− 100e−x2 ln (m) ≤ 0

1
100mxx + ∂(mξ̇)

∂ξ
− ∂(mvx)

∂x
≥ 0

(4.66)
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In order to solve (4.66) we want to use the results of Theorem 4.19. For
this reason we need to compute an algebraic MFG solution of (4.65). The
condition (4.51) reads −x2P (x)G(x)− 1

100x
2G2(x) + P (x) + 1

100G(x) = x2Σ2(x)
−1

2P
2(x) + 50e−x2

G(x) = −Σ1(x)
(4.67)

Note that (4.67) has to hold on a neighborhood of the origin and hence in
particular at x = 0. Evaluating (4.67) at x = 0 we obtain the conditions

 P (0) = − 1
100G(0)

100G(0) ≤ P 2(0)

Moreover (4.67) can be rewritten as follows
(
P (x) + 1

100G(x)
)

(−x2G(x) + 1) 1
x2 > 0

G(x) < P 2(x)
100 ex

2

It can be verified that the pair (P (x), G(x))

P (x) = x2 G(x) = 1
101x

4ex
2

satisfies all conditions of Definition 4.16 and hence it is an algebraic MFGS
of (4.65).

Moreover, seeing Figure 4.1 where function Σ2(x) and Σ1(x) are shown,
we have that they are grater than zero in the neighborhood of the origin
Ω ' [−2, 2]. Indeed conditions (4.67) holds in such neighborhood and hence
Ωalg ' [−2, 2].

According to Theorem 4.19, a solution
(
τ(x, ξ),m(x, ξ), v(x, ξ), λ, Ω̄

)
of (4.50)

is given by (4.52), (4.53), (4.53), (4.53) and (4.53) where the values of R, S
and k have to be chosen in order to make Ω1 and Ω2 as large as possible. We
propose the following values

R = 15 S = 2 k = 10
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Figura 4.1: Figure of Σ1(x) and Σ2(x)

Consequently, the solution
(
τ(x, ξ),m(x, ξ), v(x, ξ), λ, Ω̄

)
of (4.50) reads

v(x, ξ) = 1
2x

2ξ2 + 15
2 (x− ξ)2

m(x, ξ) = 0.73 exp
(
− 1

202x
2ξ4eξ

2 − (x− ξ)2
)

ξ̇ = τ(x, ξ) = −10
(
x2ξ − 11

2 (x− ξ)− 1
101x

2ξ3eξ
2 (2 + ξ2

))

λ = − max
Ω2∩Ωalg,ext

(
− x2

100 − 100e−x2 ln (0.73)
)

Ω̄ = Ω1 ∩ Ω2 ∩ Ωalg,ext

where the corresponding HJB function and FPK function are shown in Figure
4.2a and 4.2b respectively. Consequently the neighborhoods of the origin
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Ω1∩Ωalg,ext and Ω2∩Ωalg,ext where such inequalities hold, w.r.t. −2 < ξ < 2,
are available in Figure 4.3a and 4.3b respectively.
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Figure 4.2: HJB and FPK inequality
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Figure 4.3: Ω1 and Ω2

According to (4.42), the local dynamic approximate solution of (4.65) is
therefore given by (τ̂(x, ξ), m̂(x, ξ), û(x, ξ)) where

τ̂(x, ξ) = τ(x, ξ) m̂(x, ξ) = m(x, ξ) û(x, ξ) = −
(
xξ2 + 15 (x− ξ)

)
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Moreover the value function v(x, ξ) and the population density function
m(x, ξ) are shown in Figure 4.4 and 4.5.
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Figura 4.4: Value function v(x, ξ)
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Figura 4.5: Population density function m(x, ξ)

In order to show the performances of the proposed solution, according to the
procedure described in Section 4.4, we consider the following dynamically
extended mean field game


ẋ(t) = û(x, t) + 1

10Ẇ (t) x(0) = x0

ξ̇(t) = τ̂(x, ξ) ξ(0) = ξ0

J (x0, ξ0 ˆ, u(x)) := limT→∞
1
T
E
[´ T

0

(
û2

2 − 100e−x2 ln (m)
)
dt
]

We analyze first the state trajectory x(t). We are interesting only in this
first part of the extended state (x(t), ξ(t)) because it has a physical meaning.
In particular, in the model that we have proposed, it is the position of a
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Ẇ (t)

Figure 4.6: Behavior of x(t) with and without the contribution of the Brow-
nian motion and with different initial conditions x0

particular fish on the line. In Figure 4.6a the behavior of the state x(t) with
different initial conditions x0 and ξ0 = 0 without the contribution of the
Brownian motion (i.e. σ = 0) is shown. All the state trajectories converge
on the origin. This is due to the fact that the value function in Figure 4.4 is
concave everywhere and has a minimum at the origin. For this reason, the
corresponding feedback control û(x, ξ) is such that each player is attracted
towards the origin. We also note that this behavior of the trajectory of
each fish, when they are moving according to the suboptimal solution, is
consistent. Indeed, remembering the form of the cost function (4.64), we
have that the value of the state that minimizes the cost is (x, ξ) =

(
0, ξ̄

)
for each ξ̄ ∈ R. Moreover in Figure 4.6a we also note that the derivative of
x(t), i.e. the velocity, has a very large norm when the corresponding player
is far from the origin. However the velocity norm is smaller when the player
is close to the origin. This is consistent indeed in the cost function (4.64)
there is a term, i.e. u2

2 , that penalizes an large velocity and another term,
i.e. −100e−x2 ln (m), that penalizes the fact that a fish is far from the other
fish or far from the origin. When a fish is far from the origin the latter term
is the biggest and, because of this, it moves towards origin very fast. On the
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contrary, when a fish is near to the origin, the first term of the cost function is
the biggest and, because of this, the velocity of the fish decreases. Analyzing
these first results we could say that the local dynamic approximate solution
of (4.65) seems to be accurate.
In Figure 4.6b some realizations of x(t) with different initial conditions x0
and ξ0 = 0 are available. We have to consider realizations of x(t) because
x(t) is influenced by the Brownian motion that is a stochastic process and
therefore it is a stochastic process. Differently from Figure 4.6a , in Figure
4.6b we observe that the norm of x(t) does not decrease with the increase
of time t. It decreases only in the initial instants or, in other words, when
it describes a fish that is far from the origin. This is due to the Brownian
motion that plays the role of a noise. It is countered by feedback control
only when the norm of x is large and therefore the cost function (4.64) is
large too. On the contrary when the norm of x is smaller the contribution
of the feedback control in the cost function is smaller and for this reason
the contribution of the Brownian motion is sufficient to get the considered
player away from the origin even if the origin is the position that minimizes
the cost function. However, this behavior of the state trajectories x(t) and
consequently of the fish that we are modeling is consistent. Indeed, in a real
framework, it is impossible that all fish go simultaneously to the same point
firstly because they can not physically occupy the same exact position and
secondly because each fish can not control his own position exactly because
of the presence of other fish and the possible collisions. In other words, as we
said, Brownian motion in this case models the crowding. This is an example
of the fact that the Brownian motion is often very useful to make a mean field
game suitable to model real phenomena. Finally we note that, at least in the
realizations that we are considering in Figure 4.6b, for a large t fish stay in
a neighborhood of the origin such that −1 < x < 1. However this behavior
is different from the behavior described by the population density function
m(x, ξ) in Figure 4.5. Indeed in Figure 4.5 we see that each position such
that −2 < x < −2 has approximately the same probability to be occupied by
a fish. This mismatch may be due either to the fact that we have considered
realizations that hence that do not describe the general behavior of players
or to the fact that the proposed solution is only an approximation.
Finally, we can say that, in this simple numerical example the local dynamic
approximate solution describes a behavior of players that is very similar to
what we expect.
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Chapter 5

Conclusions and Future Works

In this work the theory of mean field games has been introduced. The mean-
ing of the HJB PDE and of the FPK PDE, that have to be solved in order to
find the optimal solution of a mean field game problem, have been studied.
Moreover, a method to find a local approximate dynamic solution for a class
of stationary mean field games has been proposed. It is based on the ap-
proach used in other methods developed for optimal control and differential
games. However, new ideas are considered in order to deal with the structure
of the involved equation. This procedure has been finally applied to an easy
numerical problem and the produced results have proven to be consistent.
The positive aspects of the proposed procedure to solve mean fields games
are the following

• It allows to solve a rather large class of mean field games simply solving
PDIs and avoiding dealing with PDEs

• It allows to always find a suboptimal solution of a class of stationary
mean field games

• It provides consistent results at least for simple problems

Nevertheless, this work is thought of being a first step and it can be extended
for example studying a more general solution of a larger class of nonlinear
mean field games. Indeed, some of the limits oh the proposed strategy are
the following
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• It is local and hence it provides a suboptimal solution that holds only
in a generally small neighborhood of the origin. This limit could be
removed by deeply studying the structure of the inequalities (4.60) and
(4.62) and trying to find some assumptions that allow to solve them
for each (x, ξ) ∈ R2d

• It is an approximate solution and hence the corresponding optimal
control does not allow to minimize the cost function. This problem
can not be solved because the only way to find an optimal solution for
a mean field game in the general case is to solve the HJB and FPK
PDEs. However it is typically very difficult. Nevertheless, it could be
possible to find some conditions that allow to quantified the accuracy
of the proposed solution and to increase it. For example in [15] the the
accuracy of the local dynamic approximate solution can be increased
acting on the initial condition of the extended state ξ0 whose role has
not been studied in this work

• It works only on a small class of nonlinear mean field games. It could
be made larger by considering, fore instance, a more complex form of
the cost function (4.14) with some terms linked to the expectation and
the variance of the population density function m(x).

• It work only on stationary mean field games but it could be extended
to non stationary mean field games by introducing the dependence on
time and therefore considering the general HJB FPK PDEs (4.5).

• The local dynamic approximate solution could make the mean field
games unstable. It may be avoided by deeply studying the behavior of
the mean field game in a neighborhood of the origin and in particular,
considering its linearization around the origin and providing results in
[4].



Appendix A

Mathematical tools

In this appendix we introduce some mathematical tools that are widely used
in the text.

Vector derivatives

Let c ∈ Rn be a vector, A ∈ Rn×n a symmetric matrix, x =
(
x1 . . . xn

)T
and W (x) : Rn 7−→ Rn×n a smooth function. Then the following properties
hold

1.
∂CTx

∂x
= cT (A.1)

2.
∂Ax

∂x
= A (A.2)

3.
∂xTAx

∂x
= xT

(
A+ AT

)
= 2xTA (A.3)

4.
tr

(
∂xTW (x)

∂x

)
= tr (W (x)) + xT ∇̄x (W (x)) (A.4)
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Proof.

tr

(
∂xTW (x)

∂x

)
= tr

∂
( ∑n

i=1 xiWi,1(x) · · · ∑n
i=1 xiWi,n(x)

)
∂x



= tr


∑n
i=1

(
xi

∂(Wi,1)
∂x1

)
+W1,1 · · ·

∑n
i=1

(
xi

∂(Wi,n)
∂x1

)
+W1,n

... . . . ...∑n
i=1

(
xi

∂(Wi,1)
∂xn

)
+Wn,1 · · ·

∑n
i=1

(
xi

∂(Wi,n)
∂xn

)
+Wn,n



= tr (W ) + tr


∑n
i=1

(
xi

∂(Wi,1)
∂x1

)
· · · ∑n

i=1

(
xi

∂(Wi,n)
∂x1

)
... . . . ...∑n

i=1

(
xi

∂(Wi,1)
∂xn

)
· · · ∑n

i=1

(
xi

∂(Wi,n)
∂xn

)


= tr (W (x)) + xT ∇̄x (W (x))

Trace properties

Let B,C ∈ Rn×n be matrices, P ∈ Rn×n a positive definite matrix and
N ∈ Rn×n a negative definite matrix. Then the following properties hold

1.
tr(BC) = tr(CB) (A.5)

2.
tr(P ) > 0 tr(N) < 0 (A.6)

3.
tr(PP ) > 0 tr(PN) < 0 (A.7)

Proof. We prove that tr(PN) < 0. Exploiting the Choleshy decomposition
we have that

P = P
1
2P

T
2

Exploiting property (A.5) then
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tr (PN) = tr (NP ) = tr
(
NP

1
2P

T
2
)

= tr
(
P

T
2 NP

1
2
)

Considering the vector z = P
1
2x we have that xTP T

2 NP
1
2x = zTNz < 0 for

each z ∈ Rn and hence for each x ∈ Rn. For this reason the matrix P T
2 NP

1
2

is negative definite. The proof is completed using property (A.6).

Divergence properties

Given F (x) : Rn 7−→ R1×n, ϕ(x) : Rn 7−→ R, a ∈ R, A ∈ Rn×n, some
properties of the divergence operator are

1.
div (ϕ(x)F (x)) = F (x)ϕTx (x) + ϕ(x) div(F (x)) (A.8)

2.
div (aF (x)) = a div(F (x)) (A.9)

3.
div (ϕx(x)A) = tr (ϕxx(x)A) = tr (Aϕxx(x)) (A.10)
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Appendix B

Proofs

B.1 Theorem 2.10

Proof. Equation (2.12) is equivalent to the following system of inequalities
that holds for any ε > 0 and h ≥ 0V (x0, t0) ≤ infu(t)∈U

(´ t+h
t

L (x(s), u(t), t) ds+ V (x(t0 + h), t+ h)
)

+ ε

V (x0, t0) ≥ infu(t)∈U
(´ t+h

t
L (x(s), u(t), t) ds+ V (x(t0 + h), t+ h)

)
− ε
(B.1)

where x(s) = x(s; t0, x0, u(t)) and x(t0 + h) = x(t0 + h; t0, x0, u(t)). The
first inequality is an upper bound and the second one is a lower bound for
V (x0, t0). We consider first the upper bound and a particular V (x̂, t̂) where
x̂ ∈ Rn and t̂ ≥ 0.
Choose any u1(t) ∈ U , where U is the set of the assumption (H1), and define
the corresponding trajectory x1(t) according to (2.3). We have that

ẋ1(t) = f (x1(t), u1(t)) x1(t̂) = x̂

for t > t̂. Moreover x1(t) exists and is unique because (H1) holds. Fix ε > 0
and choose u2(t) ∈ U such that

V (x1(t̂+ h), t̂+ h) + ε ≥ lim
T−→∞

ˆ T

t̂+h
L (x2(t), u2(t), t) dt

where
ẋ2(t) = f (x2(t), u2(t)) x2(t̂+ h) = x1(t̂+ h)
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for t > t̂+ h. Note that such a u2(t) exists because (H2) holds. Define now
a new control u3(t)

u3(t) =

u1(t) if t ∈ [t̂, t̂+ h[
u2(t) if t ∈ [t̂+ h,∞[

which gives rise to trajectory

ẋ3(t) = f (x3(t), u3(t)) x3(t̂) = x̂

for t > t̂. Once again the solution of (2.3) is unique because (H1) holds

x3(t) =

x1(t) if t ∈ [t̂, t̂+ h[
x2(t) if t ∈ [t̂+ h,∞[

Consequently

V (x̂, t̂) ≤ J
[
u3(t), x̂, t̂

]
= lim

T−→∞

ˆ T

t̂

L (x3(t), u3(t), t) dt

=
ˆ t̂+h

t̂

L (x1(t), u1(t), t) dt+ lim
T−→∞

ˆ T

t̂+h
L (x2(t), u2(t), t) dt

≤
ˆ t̂+h

t̂

L (x1(t), u1(t), t) dt+ V (x1(t̂+ h), t̂+ h) + ε

Since u1(t) is arbitrary, it must hold that

V (x̂, t̂) ≤ inf
u(t)∈U

ˆ t̂+h

t̂

L (x(t), u(t), t) dt+ V (x(t̂+ h), t̂+ h)
+ ε

Considering now the lower bound, fix ε > 0 and choose u4(t) ∈ U such that

V (x̂, t̂) ≥ lim
T−→∞

ˆ T

t̂

L (x4(t), u4(t), t) dt− ε

where
ẋ4(t) = f (x4(t), u4(t)) x4(t̂) = x̂
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for t > t̂. From the definition of value function

V (x4(t̂+ h), t̂+ h) ≤ lim
T−→∞

ˆ T

t̂+h
L (x4(t), u4(t), t) dt

Finally

V (x̂, t̂) ≥ inf
u(t)∈U

ˆ t̂+h

t̂

L (x(t), u(t), t) dt+ V (x(t̂+ h), t̂+ h)
− ε

B.2 Theorem 2.11

Proof. Since (H1) and (H2) hold, the dynamic programming principle holds.
Thus we can rearrange (2.12) as follows

inf
u(t)∈U

[ˆ t+h

t

L (x(s), u(s), s) ds+ V (x(t+ h), t+ h)− V (x, t)
]

= 0

where h > 0, t > 0 and u(t) ∈ U is an input and x(t) is the corresponding
unique solution of (2.3). Divide through by h > 0

inf
u(t)∈U

[
1
h

ˆ t+h

t

L (x(s), u(s), s) ds+ V (x(t+ h), t+ h)− V (x, t)
h

]
= 0

Let h −→ 0 and, on the region Ω where V is differentiabled, we have

inf
u(t)∈U

[
L (x(t), u(t), t) + d

dt
V (x, t)

]
= 0

Applying the chain rule on d
dt
V (x, t)

inf
u(t)∈U

[
L (x(t), u(t), t) + Vt(x, t) + Vx(x, t)

d

dt
x(t)

]
= 0
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Then, we can substitute the system dynamics d
dt
x(t) = ẋ(t) = f(x, u, t)

inf
u(t)∈U

[L (x(t), u(t), t) + Vt(x, t) + Vx(x, t)f(x(t), u(t), t)] = 0

Observe that the only dependence on u(t) ∈ U is u(t) = u ∈ Rm

inf
u∈Rm

[L (x, u, t) + Vt(x, t) + Vx(x, t)f(x, u, t)] = 0

Thus we obtain the HJB PDE

Vt(x, t) +H(x, u, t, Vx(x, t)) = 0

where H(x, u, t, Vx(x, t)) is the Hamiltonian with p(t) = Vx(x, t). This sub-
stitution can be made because, according to the notation adopted, both p(t)
and Vx(x, t) are row vectors with the same dimension.
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